Blogs

LSST's Auxiliary Telescope

February 2, 2018 - In tandem with LSST’s construction on Cerro Pachón, a smaller telescope will soon be assembled on nearby calibration hill, a short distance away from the main LSST Facility. LSST’s 1.2-meter Auxiliary Telescope, a gift from Edgar Smith, will measure atmospheric transmission, which refers to how directly light is transmitting through the Earth’s atmosphere in a given spot, as opposed to being absorbed or scattered. Because the presence of certain molecules and particles in the atmosphere will change the color of light detected by the LSST telescope, data collected by the Auxiliary Telescope, as it mirrors the nightly movements of LSST, will inform the catalog corrections that need to be made to LSST data in order to render it more accurate.

LSST Mirror Washing

January 22, 2018 - To ensure optimal performance of the LSST telescope, a regular cleaning schedule of its mirrors will be implemented during operations. Weekly, the Primary/Tertiary Mirror (M1M3) and Secondary Mirror (M2) surfaces will be cleaned by spraying the surfaces with a carbon dioxide (CO2) “snow” which removes dust particles and other contaminants. Approximately every six months, M1M3 will be cleaned with neutral soap and water using very soft chamois mops, followed by de-ionized water rinsing and drying using small air knives around the mirror cell. Both of these cleaning procedures take place without removing the mirrors from the telescope, and are completed within one summit working day. Neither the CO2 nor wet contact wash will impact the nightly observing schedule.

In addition to these preventative maintenance activities, the mirrors will be stripped of their reflective coatings, washed, and recoated every few years. We anticipate the M1M3 (coated with aluminium) will be cleaned and recoated every 2 years, and the M2 (coated with protective silver) every 5 years. Reflectance monitoring will allow us to predict when this more time-intensive work is necessary, and it will likely be coordinated with other scheduled downtime.

The washing station, which provides for pristine optical surfaces before coatings are deposited, is a deliverable part of the coating plant contract. A Provisional Acceptance Test of the washing chamber will take place later this month at the Von Ardenne facilities in Dresden, Germany. The review includes observation of the washing boom, seen in this 30-second video provided by LSST Coating Chamber Engineer Tomislav Vicuna. This special machinery will remove the old mirror coating and wash the mirror prior to moving it into the coating chamber for recoating.

A related story about the LSST coating chamber, from March, 2017, can be found here.

Around LSST

LSST Assembly Integration Verification (AIV) Manager Jacques Sebag submitted this spectacular drone footage of the LSST facility, taken on December 28. The video was taken after the LSST team collaborated with subcontractor Besalco to move the facility mobile roof to the flat area located on the north side of the lower enclosure. Congratulations to all for this achievement at the end of 2017!

See the full video or download

Season's Greetings from LSST

Season's Greetings from LSST

LSST wishes you health, happiness,
and success in the New Year!

PFlow Power Lift

December 14, 2017 – The LSST mirrors and camera are designed to be transported on carts, as complete subassemblies, from the telescope to the maintenance level within the summit facility during LSST's ten-year survey lifetime. The mirrors will be recoated approximately every two years and the camera clean room will be available to support maintenance and servicing.

How to Connect with LSST at AAS 231

LSST Town Hall
Wednesday, January 10, 7:30 pm – 9:00 pm, Potomac D

NCOA Town Hall
Thursday, January 11, 12:45 pm – 2:00 pm, Potomac C 

Career Networking & Job Fair
6:30 pm – 8:00 pm, Maryland Ballroom A&B, Tuesday, January 9th

LSST Booth #809
Part of the NSF Pavillion.

AAS Hack Together Day
10:00 am – 7:00 pm, National Harbor 13, on Friday, January 12th.

Preparing to Light Up the LSST Network

November 12, 2017 - LSST’s fiber-optic network, which will provide the necessary 100Gbps connectivity to move data from the summit of Cerro Pachón to all LSST operational sites and to multiple data centers, came one milestone closer to activation last week; the AURA LSST Dense Wavelength Division Multiplexing (DWDM) Network Equipment that LSST will use initially was installed in several key locations. DWDM equipment sends pulses of light down the fiber to transmit data, therefore a DWDM box is needed at each end of a fiber network in order for the network to be operational. In this installation project, the Summit-Base Network DWDM equipment was set up in the La Serena computer room and in the communications hut on the summit of Cerro Pachón.

Earthcam Test

Surrogate Mirror Installation

November 9, 2017 - At CAID Industries in Tucson, the Surrogate Mirror has now been mounted to the Primary/Tertiary Mirror (M1M3) Cell. This is a significant milestone for both the Surrogate Mirror and for the M1M3 Cell, allowing the start of the next phase of integration: installing the figure actuators.

Education and Public Outreach (EPO) Completes a Milestone Review

October 3, 2017 - LSST is a revolutionary project for a number of reasons, one of which is its commitment to building an Education and Public Outreach (EPO) program as novel and robust as LSST itself. The EPO team (pictured in the accompanying photo) is currently developing the infrastructure for the program to be delivered during operations; this process that is occurring in tandem with the construction of LSST's observational facility and other subsystem components. This long lead time allows for thoughtful and thorough prototyping, testing, and evaluation of EPO products so they'll be ready when LSST Operations begin in 2022.

Pages

Financial support for Rubin Observatory comes from the National Science Foundation (NSF) through Cooperative Support Agreement No. 1202910, the Department of Energy (DOE) Office of Science under Contract No. DE-AC02-76SF00515, and private funding raised by the LSST Corporation. The NSF-funded Rubin Observatory Project Office for construction was established as an operating center under management of the Association of Universities for Research in Astronomy (AURA).  The DOE-funded effort to build the the Rubin Observatory LSST Camera (LSSTCam) is managed by the SLAC National Accelerator Laboratory (SLAC).
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.
NSF and DOE will continue to support Rubin Observatory in its Operations phase. They will also provide support for scientific research with LSST data.   




Contact   |   Employment   |   LSST Corporation

Admin Login

Back to Top