

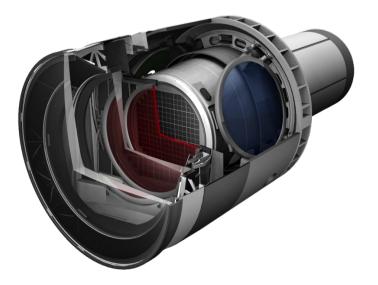
Camera Control System Status

Tony Johnson CCS System Architect and CAM, SLAC

NSF/DOE Joint Status Review August 2019

Joint Status Review • Tucson • August 27th - 30th

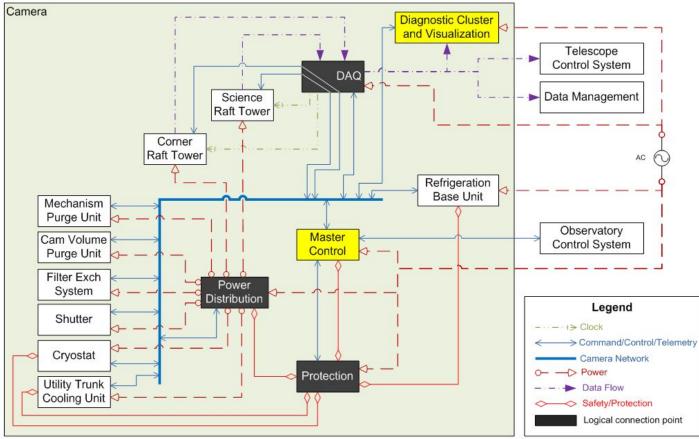
100

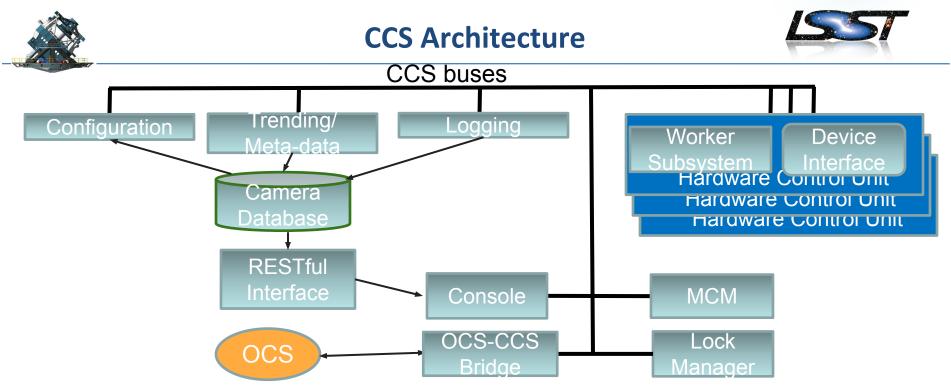


- Technical Status
- Recent Accomplishments & Notable Outcomes
 - Recent Accomplishments
 - Main Camera, AuxTel and ComCam
 - Remaining work and Challenges
 - Transition to Commissioning and Operations
- Risks and Mitigations Status
- Hazards
- Programmatic Status
 - Organizational Structure
 - Cost and Schedule Performance Status
 - Upcoming Major Milestones
- Summary
- Supporting Material
 - Key Documents
 - Past Review recommendations
 - BCR summaries

Large Synoptic Survey Telescope

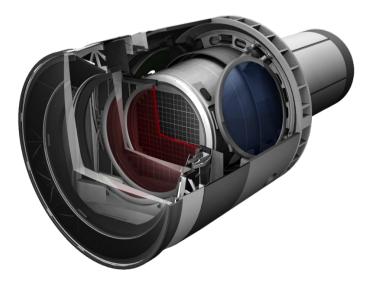
Introduction and Scope




- The Camera Control System (CCS) is responsible for
 - Controlling, configuring and monitoring Camera subsystems
 - Communication with Observatory Control System (OCS)
 - Receive commands and configuration
 - Sending command responses, events, status and trending data
 - Camera diagnostic cluster and visualization
 - Camera engineering consoles
- Two main thrusts of development:
 - Test stands/prototypes/I&T (get early experience/feedback)
 - All Camera subsystems have been initially developed as prototypes
 - Often used for testing performance of subsystem hardware "Test Stands"
 - The software used for these hardware prototypes is now becoming the production CCS subsystems shipped with the Camera
 - Develop Camera interface to Observatory
 - Pathfinder exercises (test observatory interfaces)
 - AuxTel (2017-2019), ComCam (2019-2020), Full Camera (2019-2021)

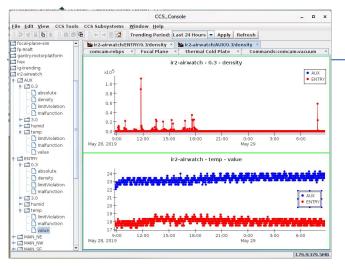
Camera Logical block diagram

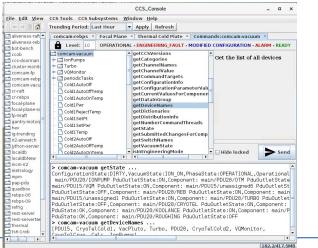
- All modules use core CCS infrastructure written in Java
 - Core infrastructure provides communication protocol used by buses (jGroups)
 - Command bus used for commands/responses
 - Status bus used for status messages, trending, arbitrary subsystem "meta-data"
 - Logging bus logging messages (debug aid)
- All modules run on Linux, either standard PC or embedded computer (Versalogic Lion and Advantech Uno)


- ICD (LSE-71) was extensively updated in 2018 to take into account changes in Observatory level documents LSE-209, LSE- 70
 - Commands remain largely unchanged
 - Lifecycle:
 - enterControl, exitControl, start <configuration>, standby, enable, disable
 - Operations:
 - initImage <deltaT>
 - takeImages <nImages> <exposure> <shutter> <science> <wavefront> <guider> <visit-name>
 - setFilter <filterSpec>
 - initGuiders <roiSpec>
 - Calibration:
 - clear <nClears>
 - startImage <shutter> <science> <wavefront> <guider> <visit-name> <timeout>
 - endImage
 - discardRows <nRows>
 - We anticipate additional requirements appearing during

commissioning. and have blan med for this

Large Synoptic Survey Telescope

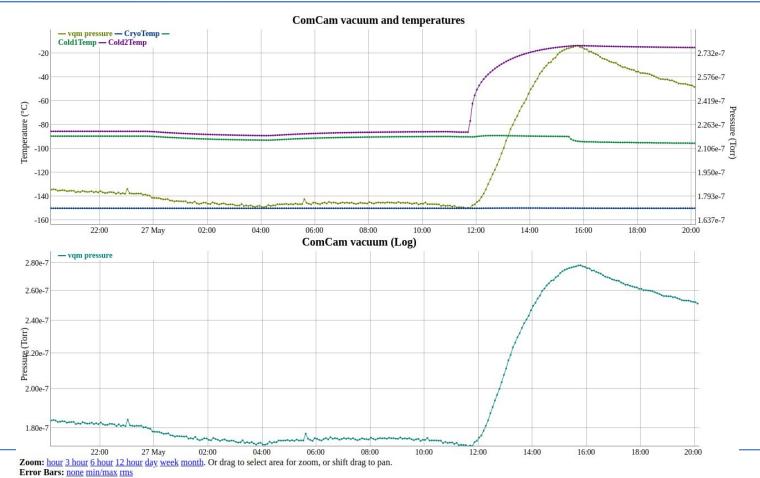

Technical Status




- In use with test stands (BNL, SLAC, etc) for many years
- Deployed in Tucson for AuxTel for ~1 year
- Key features
 - Distributed communication system based on jGroups (multicast)
 - Command line interface (ccs-shell)
 - Graphical console (ccs-console)
 - plugins to support subsystem specific functionality
 - Python scripting (ccs-script) for debugging, automation, test-stands
 - Telemetry database records time-histories for monitored quantities
 - Restful interface makes data available to:
 - CCS Console
 - Web based time history plotting tool
 - Other utilities (e.g. python scripts, jupyter etc)
 - Configuration database (under development)
 - Currently using .properties files stored in github until final system complete
 - Lock manager (partially implemented)
 - Allows local-control to be locked out when under observatory control

CCS Console

Eile Edit View	CCS Tools CCS Subsystem Trending Period: Last Hour comcam-rebps × Focal P CCD Temperature	 Apply 		•	
aliveness-raft aliveness-rab bot-bench ccob ccs-doorman cluster-monit comcam-rebp comcam-rebp comcam-vacu c-raft	comcam-rebps × Focal P		Refresh	•	
aliveness-reb bot-bench ccob ccs-doorman cluster-monito comcam-reb comcam-rebp comcam-vacu crraft		lane ×		•	
bot-bench ccob ccs-doorman cluster-monite comcam-fp comcam-rebp comcam-vacu cr-raft				-	
ccob ccs-doorman cluster-monito comcam-fp comcam-rebp comcam-vacu	t X ∎			•	
ccs-doorman cluster-monito comcam-fp comcam-rebp comcam-vacu cr-raft	†× _				
cluster-monito comcam-fp comcam-rebp comcam-vacu cr-raft	X I				
comcam-fp comcam-rebp comcam-vacu cr-raft					
] comcam-rebp] comcam-vacu] cr-raft					
comcam-vacu					
] cr-raft					
focal-plane focal-plane-si					
fp-9raft					
gantry-motor					
1 ganci y-mocori, 1 hex					
gig-trending					
ir2-airwatch					
jython-server					
localdb					
localdbNew					
mcm-ir2					
metrology					
] mpm					
] pap-pdu					
quadbox rebps-06					
rebps-09					
refrig					
rest-server					
rest-serverNe					
thermal					V
ts6-1reb					I
					<u>→</u>
					112.3/270.0M
	CCS_Console				×
Subsystems	s <u>W</u> indow <u>H</u> elp				
: Last Hour	Apply Refre	sh			
s × Focal P	lane × thermal Cold	i Plate 🖾			
					1
	& TRIM HEATE	R STRING	is		
THRU L3			()		
1	TM	P	(0,5)	TRIM HE	ATERS
BAY	BAY BAY 24 14	BAY	8.1	ColdHtr 5	Power
34	24 14	04	0.1	ColdHtr 4	

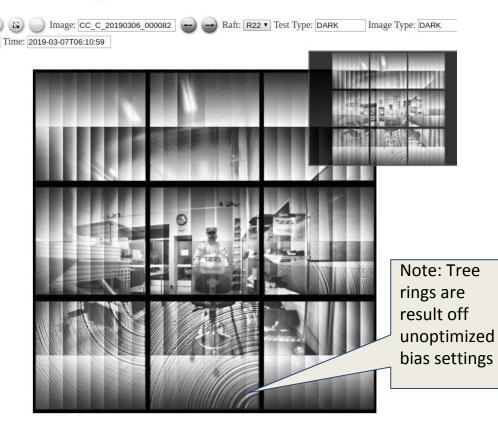


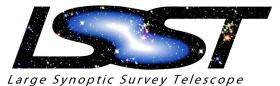
File Edit View CCS Tools

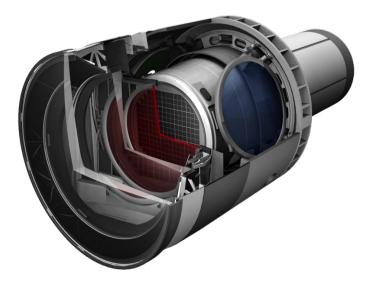
CCS Web Trending tool

Image Visualization (quick view)

÷

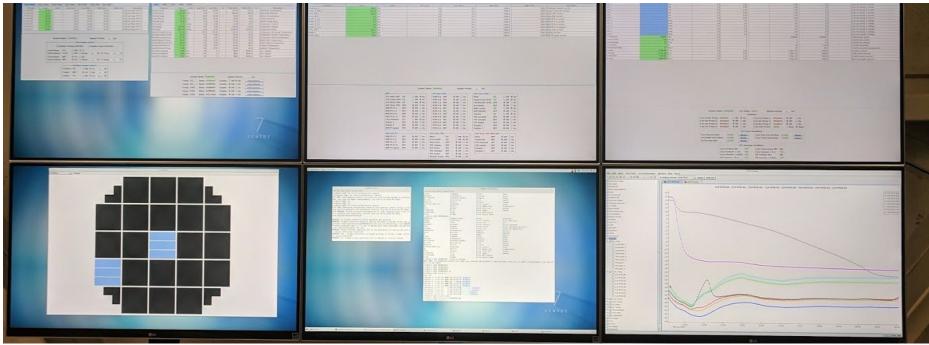

Run:


LSST Camera Image Viewer


ComCam • Obs	s Day ↓			Ð	Q Search
Obs Id	t	Image Type	Test Type	Obs Time	Rafts
 Obs Day: 20190319 	(60 image	s)			
- Obs Day: 20190306	(98 image	s)			
CC_C_20190306_00	00001	BIAS	BIAS	2019-03-07T05:17:23	<u>R22</u>
CC_C_20190306_00	00002	BIAS	BIAS	2019-03-07T05:17:28	<u>R22</u>
CC_C_20190306_00	00003	BIAS	BIAS	2019-03-07T05:17:34	R22
CC_C_20190306_00	00004	BIAS	BIAS	2019-03-07T05:17:41	<u>R22</u>
CC_C_20190306_00	00005	BIAS	BIAS	2019-03-07T05:17:46	<u>R22</u>
CC_C_20190306_00	00006	BIAS	BIAS	2019-03-07T05:17:51	<u>R22</u>
CC_C_20190306_00	00007	BIAS	BIAS	2019-03-07T05:17:57	R22
CC_C_20190306_00	8000	BIAS	BIAS	2019-03-07T05:18:03	<u>R22</u>
CC_C_20190306_00	00009	BIAS	BIAS	2019-03-07T05:18:08	<u>R22</u>
CC_C_20190306_00	00010	BIAS	BIAS	2019-03-07T05:18:16	<u>R22</u>
CC_C_20190306_00	00011	BIAS	BIAS	2019-03-07T05:40:33	<u>R22</u>
CC_C_20190306_00	00012	BIAS	BIAS	2019-03-07T05:40:38	<u>R22</u>
CC_C_20190306_00	00013	BIAS	BIAS	2019-03-07T05:40:43	R22
CC_C_20190306_00	00014	BIAS	BIAS	2019-03-07T05:40:48	<u>R22</u>
CC_C_20190306_00	00015	BIAS	BIAS	2019-03-07T05:40:54	<u>R22</u>
CC_C_20190306_00	00016	BIAS	BIAS	2019-03-07T05:40:59	<u>R22</u>
CC_C_20190306_00	00017	BIAS	BIAS	2019-03-07T05:41:05	<u>R22</u>

Try the preview... https://lsst-camera-dev.slac.stanford.edu/FITSInfo/

Recent Accomplishments & Notable Outcomes



- Major accomplishment was operation of BOT test stand in April/May 2019
 - 2 Engineering Test Unit (ETU) rafts installed in cryostat
 - CCS controlled and monitored most camera subsystems
 - DAQ (v1.5) and raft electronics boards (REBs)
 - Utility Trunk/Quadbox including REB power supplies
 - Refrigeration/Cryo systems
 - Various test heads (CCOB, flat-illuminator, etc)
 - Some mounted on movable BOT x-y stage
 - Controlled readout and generation of FITS files
 - Over 37,00 exposures (>500,000 FITS files) generated and analyzed
 - Mirrored to NCSA for future offline DM analysis
 - Next step "9 raft" BOT operations
 - Will use DAQ (v4.0)

BOT Test Stand Operations

- BOT operations controlled by running shifts in IR2 control room
 - Mimicking the way the camera will be operated in Chile

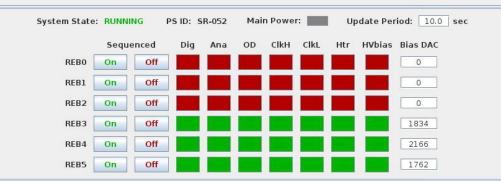
- Controls and Monitors all raft electronics boards
- Controls and Monitors CCDs, including PID loop for temperature control
- Loads sequencer and DACs in REB boards to control readout
- Handles image data received from DAQ
 - Generates FITS files for analysis on diagnostic cluster
 - Also archived to NCSA during BOT operations
 - Feeds image data to "quick-view" visualization system
 - Keeps database record for all images taken
- Provides specialized GUIs for monitoring health of all electronics/CCDs
- For "9-raft operations"
 - Will use DAQ v4.0 (essentially final DAQ API)
 - WIII split image processing across multiple nodes of diagnostic cluster
 - Parallelization of monitoring across multiple threads

- Control of quadbox power systems in place
 - Quadbox for ComCam (similar but not identical) is under test
- Work remaining on testing of camera body/purge systems (for thermal control of various camera volumes)
 - Test electronics rack created, software being finalized, testing should be completed before end of August.

BFR PDU_5V	PDU_24VC F	PDU_24VD	PDU_48V REB_B	ulk_PS			
Channel	Value	Units	Low Limit	Low Warn	High Warn	High Limit	Description
Protection_I	730.0	mA	0.0	0.0	1000.0	1000.0	Protection system current
Clean_5_24V_I	830.0	mA	0.0	0.0	1000.0	1000.0	Clean 5 and 24V current
Dirty_24V_I	530.0	mA	0.0	0.0	1000.0	1000.0	Dirty 24V current
Dirty_48V_I	0.0	mA	0.0	0.0	2000.0	1000.0	Dirty 48∨ current
RebPs_0_2_I	0.0	mA	0.0	0.0	1000.0	1000.0	REB PS 0-2 current
RebPs_3_5_I	0.0	mA	0.0	0.0	1000.0	1000.0	REB PS 3-5 current
RebPs_6_8_I	810.0	mA	0.0	0.0	1000.0	1000.0	REB PS 6-8 current
RebPs_9_12_I	790.0	mA	0.0	0.0	1000.0	1000.0	REB PS 9-12 current
Dirty_28V_I	1920.0	mA	0.0	0.0	1000.0	1000.0	Dirty 28V current
Heater_I	0.0	mA	0.0	0.0	1000.0	1000.0	Heater current
RebPs Spr I	0.0	mA	0.0	0.0	1000.0	1000.0	REB PS spare current

System State: RUNNING

Update Period: 10.0 sec

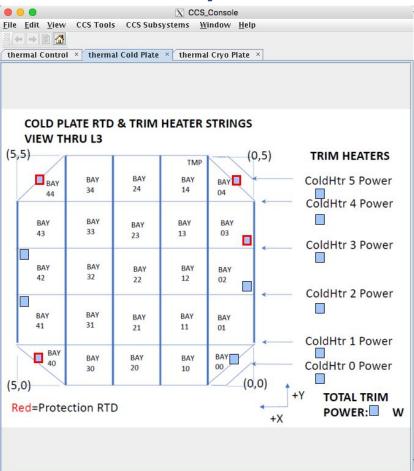

BFR				5V Clean PD	U			24V Clean PDU—			
5V Clean PDU	ON	🔾 Off	On	OTM 0-A O	N	○ Off	On	Main	ON	🔾 Off	🖲 Or
24V Clean PDU	ON	🔾 Off	🖲 On	OTM 0-B O	FF	Off	On On	Power/Cryo HCUs	ON	🔾 Off	🖲 Or
24V Dirty PDU	ON	🔾 Off	🖲 On	OTM 1-A O	FF	Off	On On	FES/Shutter HCUs	OFF	Off	Or
48V Dirty PDU	OFF	Off	🔾 On	OTM 1-B O	FF	Off	On On	lon pumps	OFF	Off	🔾 Or
REB PS 0-2	OFF	Off	🔾 On	OTM 2-A O	FF	Off	On On	Body purge	ON	🔾 Off	🖲 Or
REB PS 3-5	OFF	Off	On On	OTM 2-B O	FF	Off	On On	BPU MAQ20	OFF	Off	Or
REB PS 6-8	ON	Off	On	OTM 3-A O	N	○ Off	On	Gauges	ON	🔾 Off	Or
REB PS 9-12	ON	○ Off	On	OTM 3-B 0	FF	Off	On On	FES carousel	OFF	Off	Or
Trim Heaters	ON	Off	🖲 On	OTM 4-A 0	N	○ Off	On	FES changer	OFF	Off	O Or
Heater 1	OFF	Off	On On	OTM 4-B 0	FF	Off	On On	FES loader	OFF	Off	Or
Heater 2	OFF	Off	On On	OTM 5-A O	FF	Off	On	Shutter 1	OFF	Off	Or
REB PS spare	OFF	Off	On On	OTM 5-B O	FF	Off	On On	Shutter 2	OFF	Off	Or
REB Bulk PS				C24V Dirty PDU				r 48V Dirty PDU (B	BFR off)		
REB PS 0-2	OFF	Off	O On	Main	ON	0 0	ff 🖲 On	Main	OFF	Off	🔾 On
REB PS 3-5	OFF	Off	O On	Cryo turbo	ON	00	ff 🖲 On	Purge fan 🛛	DFF	• Off	On
REB PS 6-8	ON	○ Off	On	Hex turbo	OFF	. 0	ff 🔾 On	FES carousel	DFF	Off (On 🔾
REB PS 9-12	ON	○ Off	On	FES clamps	OFF	. 0	ff 🔾 On	FES heater	OFF	Off	🔾 On
REB PS Spare	OFF	Off	○ On	FES brake	OFF	. 0	ff 🔾 On	Shutter 1	OFF	Off	🔾 On
•				FES changer	OFF	. 0	ff 🔾 On	Shutter 2	OFF	Off	On
				FES loader	OFF	. 0	ff 🔾 On	L		905	uni.
				Shutter brake	OFF	. 0	ff 🔾 On				

- REB power supply for control of electronics boards + CCDs
 - Prototype in use with test stands for several years
 - Production boards now in use in quadbox
 - CCS GUI currently has one page per supply
 - But wiring between power supplies and REBs is complex
- Improved GUI, for people who have not memorized the wiring diagram, nearly complete

Common REE	BO REB1	REB2	REB3 REB4	REB5					
Channel	Value	Units	Low Limit	Low Warn	High Warn	High Limit	Description		
MainVoltage		Volts	47.0	47.00	50.00	50.0	Main PS Voltage		
MainCurrent		mA	200.0	200.0	3000.0	3000.0	Main PS Current		
MainPower		Watts	5.0	5.00	100.00	100.0	Main PS Power		
BoardTemp0	30.50	°C	0.0	0.00	50.00	50.0	0 Board temperature (
BoardTempl	32.25	°C	0.0	0.00	50.00	50.0	Board temperature 1		
BoardTemp2	29.56	°C	0.0	0.00	50.00	50.0	Board temperature 2		
BoardTemp3	33.63	°C	0.0	0.00	50.00	50.0	Board temperature 3		
BoardTemp4	29.38	°C 0.0		0.00	50.00	50.0	Board temperature 4		
BoardTemp5	30.31	°C	0.0	0.00	40.00	40.0	Board temperature 5		
BoardTemp6	32.19	°C	0.0	0.00	50.00	50.0	Board temperature 6		

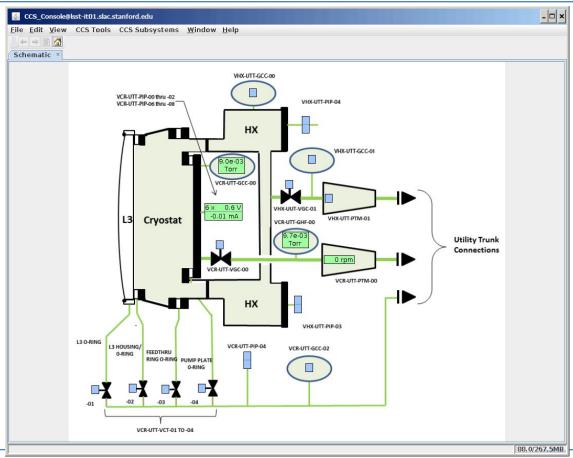
- CCS provides full control and monitoring of the cryo/cold systems
 - 3 CCS subsystems:
 - The refrigeration subsystem (refrig) controls and monitors the two cold refrigeration compressors and six cryogenic compressors.
 - The heat exchanger subsystem (hex) monitors the corresponding two cold and six cryogenic heat exchangers.
 - The thermal subsystem (thermal) controls and monitors the trim heaters used to maintain the temperatures of the cold and cryogenic plates.
 - In addition the vacuum subsystem provides:
 - Control of turbo and ion pumps on the pump plate, plus pressure monitoring at various locations

Cryo/Refrigeration GUI


						Eile Edit View CCS Tools CCS Subsystems Window Help
ile Edit Vie	w CCS Tools	CCS Subsys				
8 8 8 C						
refriq ×						
	a lebarroux P		Name V			Cold1 Cold2 Cryo5 Cryo6 Cryo4 Cryo3 Cryo2 Cryo1
Cold1 Cold		ryo6 Cryo4	The second s	Cryo2 Cryo1		Channel Value Units Low Limit Low Warn High Warn High Limit Description
Channel	Value Uni			High Warn Hi		Dischrg 😑 💿 🚫 Crya5 Control
ischrgTmp_P	20.1 °C	-150.0	-150.0	115.0	125.0 Discharge Temperature (PLC)	Dischrg Compressor: Cryo5 State: HW DSAB
ischrgTmp_M	22.9 °C	-150.0	-150.0	115.0	125.0 Discharge Temperature (MAQ20)	Dischrg Compressor. Cryos State. Hw_Dsab
ischrgPrs	70.9 psia	0.0	0.0	460.0	535.0 Discharge Pressure	Suction Switches
uctionTmp_P	21.0 °C	-12.0	-5.0	50.0	50.0 Suction Temperature (PLC)	Suction Enable: OFF Off On Lights: OFF Off On
uctionTmp_M	22.8 °C	-12.0	-5.0	50.0	50.0 Suction Temperature (MAQ20)	Suction Heater: OFF Off On Orifice Valve: OFF Off On
uctionPrs	70.9 psia	16.0	16.0	100.0	100.0 Suction Pressure	OilLevel Coolant Valve: ON O Off • On Bypass Valve: OFF • Off O On
ilLevel	10 mm	-10.0	-10	20	20.0 Oil Level	Constitu
ompVoltage ompCurrent	219.1 Volts		0.0	220.0	220.0 Compressor Voltage 10.0 Compressor Current	Comport CompCi
ompCurrent	0.1 Amp: 26.3 VA	: 0.0 0.0	0.0	10.0	2250.0 Compressor Power	O
aterInTmp	20.3 VA 22.3 °C	0.0	0.0	50.0	50.0 Water Inlet Temperature	Waterin PLC Endi Conditions PLC Running Conditions
aterOutTmp	22.3 °C	0.0	0.0	50.0	50.0 Water Outlet Temperature	Watern Discharge Temp: CLEAR Keyswitch on: YES Compr enabled: NO
terCoolTmp	22.8 C	0.0	0.0	50.0	50.0 After Cooler Temperature	AfterCo Discharge Press: CLEAR Compr waiting: NO Compr powered: NO
haseSepTmp	22.7 °C	0.0	0.0	25.0	25.0 Phase Separator Temperature	PhaseS Suction Temp: CLEAR Disch temp valid: YES Disch press valid: YES
ilSepTmp	22.4 °C	0.0	0.0	110.0	110.0 Oil Separator Temperature	OilSepT Oil Level: CLEAR Suct n temp valid: YES Suct n press valid: YES
SurgeTankTmp	35.9 °C	0.0	0.0	50.0	50.0 Surge Tank Temperature	SurgeT: After Cooler: ACTIVE Oil level valid: YES Current valid: YES
abinetTmp	21.9 °C	0.0	0.0	40.0	40.0 Cabinet Temperature	Cabinet Compressr Power: CLEAR Voltage valid: YES Current sens err: NO
mbientTmp	21.4 °C	0.0	0.0	40.0	40.0 Ambient Temperature	Ambien Sensor Readings: CLEAR Latches clear: NO Compr on 6 hrs: NO
anSpeed	1560 rpm	1140.0	1140	5520	5520.0 Fan Speed	FanSpe Smoke Detector: CLEAR Power LED On: NO
anna dhalanna	I mentered and a				· · · · · · · · · · · · · · · · · · ·	External Permit: ACTIVE
	Contraction			11-2-4-10-	riod: 10,0 sec	CCS Error Conditions
	Syster	n State: RUNN	ING	Update Pe		Compr power: CLEAR Disch press: CLEAR
(Comp: Cold1	State: HW_	DSAB EI	nable: 🖲 Off 🔾	On Full Control	
(Comp: Cold2	State: OFFI	INE E	nable: 🖲 Off 🔾	On Full Control	Disch temp: CLEAR Suction temp: CLEAR
(Comp: Cryo5	State: HW		nable: 🖲 Off 🔾	On Full Control	Plate temp: CLEAR Phase sep temp: DLYPEN
	Comp: Cryos	State: HW		nable: 🖲 Off 🔾		Oil Level: CLEAR
		State: HW				Comp: Cryo6 State: HW DSAB Enable: Off On Full Control
	Comp: Cryo4	and the second		nable: Off		Comp: Cryo4 State: HW DSAB Enable: Off O On Full Control
	Comp: Cryo3	State: OFFI			On Full Control	
	Comp: Cryo2	State: OFFI		nable: 🖲 Off 🔾		
(Comp: Cryol	State: OFFI	LINE EI	nable: 🖲 Off 🔾	On Full Control	Comp: Cryo2 State: OFFLINE Enable: Off On Full Control
						Comp: Cryol State: OFFLINE Enable: Off On Full Control

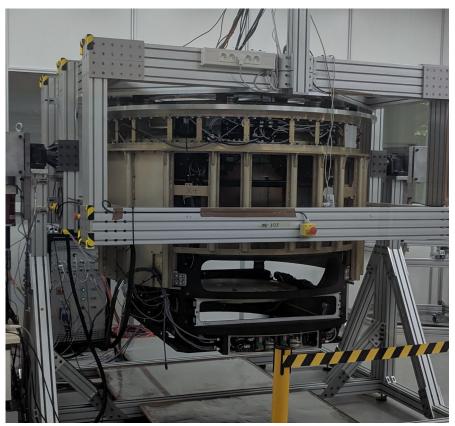
96.2/102.0M

Thermal Subsystem Cold Plate GUI



25.1/57.5M

Pump Plate Monitoring GUI



Filter Changer Subsystem (FCS)

- Carousel, Auto Changer, and Loader all installed in Paris
 - CCS can operate each component independently or operate combined system (FCS)
 - Transfer of filters between carousel and auto changer under CCS control working
 - Some remaining reliability issues being finalized
- Activities when system arrives in SLAC clean room
 - Initial testing will be done with electronics (and experts) from Paris
 - HCU and canbus interface already exists in quadbox, and is functionally equivalent to

Alerts* FCS* Commands:Fcs* PhaseState OperationalState CommandState AlertState updateStateWithSensors OPERATIONAL ENGINEERING OK READY WARNING Abort normal FCS State : CAN DEVICES BOOTING Shutdown FCS Hardware State : NOT READY FCS ▼ FCS AUTOCHANGER General View FCS OVERVIEW Changer CANopen devices Carousel CFC (filter clamped) CANopen hardware list Carousel_CS (socket stop at Standby) 🔵 Loader_LPS (loader at Storage) clampXminusController clampXplusController Carousel CF0 (no filter) Loader LRH (loader holds filter) 🔵 carouselController Carousel_CF1 (filter on socket) hyttc580 ai814 pt100 Local Protection Module acSensorsGateway loader presence 🔴 Enable Rail Linear1 🔵 Enable Clamps 🌔 latchXminusController latchXplusController lockOut Enable Rail Linear2 🔵 Enable Latches (linearRailSlaveController linearRailMasterController onlineClampXminusController Inclinometers onlineClampXplusController InclinometerXminus InclinometerXplus onlineClampYminusController -2.487577419932248 -2.487577419932248 Loader CANopen devices ▼ Autochanger ONLINE clamps Latches Latches LockStatus: OPENED Trucks filterR Close Latches Close and Lock Clamps **ONLINE** Clamps ▼ Carousel Open Latches Unlock and Open Clamps Carousel General View Filterlist Trucks State Carousel sockets socket1 Trucks position: socket2 socket3 76602 NO ERROR IN Travel STANDBY HAND-OFF ONLINE socket4 socket5 moveAndClampFilterOnline ▼ Loader goToOnline Loader General View Panel Clamp Panel goToHandOff Carrier Panel goToStandby

24

- Shutter hardware changed since early prototypes
 - Now uses Beckhoff controller
 - TwinCAT 3 RT kernel under Windows Embedded Standard 7
 - Local EtherCAT bus
 - Motor control modules
 - Digital input modules
 - PTP module (64-bit, nanosecond precision)
 - Hall switches wired to EtherCAT I/O modules
 - Generates timestamp on change of state
 - Has required complete rewrite of CCS driver, including developing a command protocol for communication between internal firmware programmed beckhoff state machine and externally visible CCS state machine
 - Subsystem now complete and ready for combined CCS+firmware+hardware testing
 - Work still needed to adapt GUI to new subsystem functionality

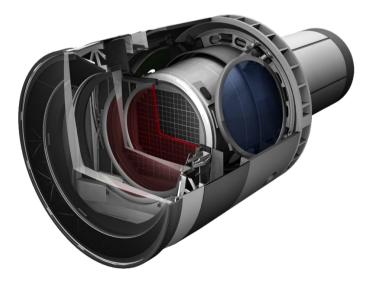
- AuxTel has been operating in Tucson since ? 2018
 - Single CCD operating using DAQ (v1.5), WREB and CCs
 - CCS controls DAQ, WREB and power supplies
 - Similar to full camera
 - CCS controls Bonn Shutter (similar to ComCam)
 - CCS monitors vacuuum and temperature
 - CCS controls Power distribution (via PDU)
 - DAQ data fed to DM similarly to main camera
 - DM Header Service and DM archiver service
 - Custom filter changer and shutter
 - Software developed and initial testing at SLAC complete
 - Master Control Module (MCM) and Observatory Control System interface (OCSBridge) operature similar to full camera
 - Invaluable it debugging interface between CCS, DM and OCS/TCS.
 - Will Ship to Chile before end of 2019 August 27th 30th

- For CCS ComCam represents an opportunity to test many camera components prior to shipping complete Camera
 - Single Raft (9 CCDs) operating in same mode as full camera
 - Focal-plane subsystem, DAQ, REB power, CCD conditions
 - Vacuum and thermal systems similar to camera
 - Custom filter changer and shutter
 - Software developed and initial testing at SLAC complete
- ComCam itself is now in Tucson
 - Aim to complete CCS installation for ComCam in Tucson in August
- Quadbox for ComCam is being finalized at SLAC (commissioning scope)
 - Will be integrated at Tucson in September
- Testing of integration with Observatory Control System
 - Scheduled for October->January 2020

- Camera Subsystems with ongoing work
 - Shutter
 - Full testing of combined CCS + Beckhoff firmware underway
 - Camera Body
 - Initial testing of Camera body temperature control loops now in progress
 - Camera Rotator
 - Controlled using OCS via reverse CCS->OCS bridge
 - Readout of Full Focal Plane
 - Daq 4.x was delivered at end of June, puts CCS control of readout from "9-raft" focal-plane on critical path
 - Filter Changer and CCOB Wide beam projector
 - Being developed by IN2P3 in france
 - Integrated Camera operation with Master Control Module and OCS Bridge

- CCS Core
 - Schedule for some work has been extended due to lack of manpower availability at IN2P3
 - Lock Manager implementation is not complete
 - Lock manager prevents different console/users from gaining access to system, and controls which commands users are authorized to issue.
 - This functionality is not critical until CCS is operating under OCS control for the full camera
 - Workaround: Take care in coordinating work between users
 - Configuration database
 - Currently we work around this by using .property files stored in github to provide equivalent functionality
 - » Missing features are time histories of configuration values and versioning of new configurations
 - Performance
 - Requirements on CCS stipulate <40ms overhead on image taking caused by message transport time.
 - Currently we have tails in message transport time which exceed this
 - Extensive diagnostics are being impemented to diagnose and fix this

Transition to commissioning and operations



- CCS is already contributing to observatory commissioning:
 - Pathfinder/Early integration exercises
 - AuxTel operation in Tucson
 - ComCam operation at SLAC and (soon) in Tucson, then Chile
 - Refrigeration pathfinder on summit in Chile
 - We will be installing first CCS servers to support this in September/October
 - We will be installing full set of CCS servers for ComCam/Main Camera before the end of 2019
 - See commissioning breakout session for updates on pathfinder
- We expect a subset of CCS personnel to migrate to commissioning and then operations, to ensure continuity of support.

Large Synoptic Survey Telescope

Risks and Mitigations

Definition of Risk and Risk Analysis

Risk can be defined as an undesirable event during project execution that negatively affects program goals for performance, cost or schedule.

- Risk management is the <u>ongoing process</u> of <u>comprehensively assessing</u> project risks.
- Camera Risk Management Plan (LCA-29-A) defines the methodology to manage our risks

Definition of Risk Probability

	Pts	Likelihood of Occurrence	Approximate Probability	Description of Probability
Γ	1	Rare	<1%	Likelihood of occurrence is not credible
Γ	2	Unlikely	1-5%	Not reasonably expected to occur
Γ	3	Possible	5-25%	Possible, or difficult to assess the chance of occurrence
Γ	4	Likely	25-67%	Very likely that an adverse event will occur
Γ	5	Highly Probable	>67%	High probability that an adverse event will come to pass

Definition of Risk Impact

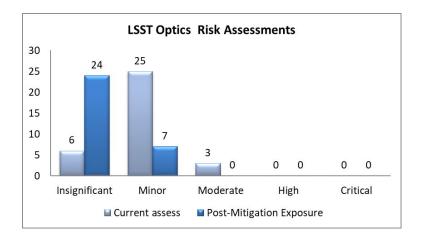
Pts	Severity of Impact	Description of Impact
Cost I	mpact	-
1	Insignificant	Overrun of cost of < \$30K, recoverable with project contingency
2	Minor	Overrun of cost of \$30k - \$200K, recoverable with project contingency
3	Moderate	Overrun of cost of 200k - \$1.5M, with significant impact on contingency
4	High	Overrun of baseline cost of \$1.5M - \$10M, with re-baseline required
5	Critical	Overrun of baseline cost of >\$10M, with project in jeopardy
Sched	ule Impact	•
1	Insignificant	Degradation of schedule margin to project critical path by < 2 wks
2	Minor	Degradation of schedule margin to project critical path by 2 wks to 1.5 months
3	Moderate	Degradation of schedule margin to project critical path by 1.5 to 3 months
4	High	Degradation of schedule margin to project critical path by 3 to 6 months
5	Critical	Degradation of schedule margin to project critical path by > 6 months
Perfor	mance Impact	•
1	Insignificant	No effect on ability to meet requirements; minor design changes needed
2	Minor	Minor excursion from subsystem requirement, but compensated elsewhere
3	Moderate	Level 2 and/or SRD design specification exceeded
4	High	Level 1 and/or SRD minimum specification exceeded
5	Critical	Unable to achieve any of the primary science missions

Quasi-quantitative process to assign objective values to probability of occurrence and impact of occurrence aspects of risk.

DTotal Impact:

(0.50*Cost Impact) + (0.33*Schedule Impact) + (0.33*Performance Impact)

□Risk Score: Risk Probability * Total Impact


Standardized risk management processes are used to manage

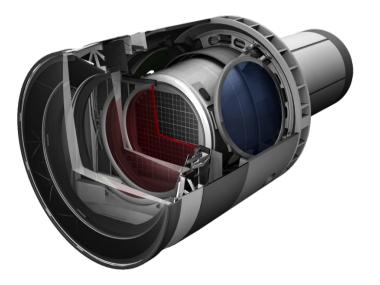
Risks are tracked in the Camera Risk registry, Document LCA-29

- Risk exposure is assessed and tracked at regular intervals since 2010 (infelence to price to price
- Actively planning mitigation to burn down risks and monitor progress
 - Current status: total risks identified
 - 35 risks are actively being mitigated
 - 11 are closed or accepted due to design changes or mitigation completion
- Mitigations are budgeted in the scope of work
- After budgeted mitigation (Post-Mitigation) is performed, residual risk is analyzed

- **Opt-021: Selected filter coating vendor cannot meet specifications in a band (Moderate Risk)**
 - Development contract will demonstrate all coatings well ahead of filter coating with 5 of 6 demonstrated to date
- Opt-039: Filter delivery (Moderate Risk)
 - Schedule contingency
 - First article planned
- Opt-001: Filter coating doesn't meet specifications (Moderate Risk)
 - Development contract will demonstrate all capability to deposit all coatings
 - First article coating will demonstrate readiness and capability
- Opt-026: L3 Doesn't meet centering requirement (Moderate Risk)
 - Test Window assembly test review
 - Testing of L3 barrel assembly

CCS active risks

Risk Title	Risk Description	Current	Exposure	Residua	Exposure
Contributed Labor	IF the CCS relies on substantial amounts of contributed labor and if that contributed labor fails to materialize, fails to deliver the expected software, or delivers software that does not meet the requirements THEN additional on-project manpower may be needed to compensate.	13	Moderate	9	Minor
Late scope changes	IF subsystems come with late changes to CCS interface scope, THEN CCS-provided software modifications will be required	10	Minor	6.7	Minor
Observatory visualization software	If an observatory wide plan for development of visualization software with required functionality and availability timescale suitable for use by the camera for I&T THEN the camera team may have to develop their own visualization system which may require more manpower than planned and/or provide less functionality than desired	8	Minor	4.0	Insignificant
Sites adhering to data format standards	IF data formats and directory structures are not precisely defined and enforced, THEN conflicting data formats and directory structures make data curation and application of test algorithms difficult or impossible across testing sites.	8	Minor	2.3	Insignificant
Insufficient personnel	If CCS D&D lacks sufficient personnel, THEN some camera subsystem development will run behind schedule or over budget, and will not be tested properly before deployment.	6.0	Insignificant	5.0	Insignificant
Maintainability	IF technology choices become obsolete, or documentation is inadequate THEN the system cannot be properly maintained.	5.0	Insignificant	3.0	Insignificant
Communications latency	If communications response times do not meet requirements THEN camera performance may not meet the specified requirements.	4.5	Insignificant	1.5	Insignificant


Risk Title	Risk Description	Current	Exposure	Residua	I Exposure
	If FNAL decides to terminate support for the eLOG, THEN an alternate system is needed or we take on the support	5.7	Insignificant	1.2	Insignificant

- We have stopped using the FNAL eLog, content that used to be on eLog (and much more) has migrated to SLACK.
- No new risks Identified since last year

Large Synoptic Survey Telescope

Hazards

Hazards can be defined as a failure of a component, system or function that could lead to personnel injury or damage to hardware.

• Hazards are **NOT** risks.

Е

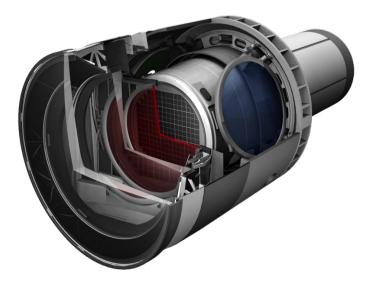
		Hazard Severity Classification	I								
Class	Description	Potential Consequences									
	Catastrophic	Injury: may cause death or permanently-disabling injury	13								
1		Property damage: near-complete loss of camera system	[
		Environment: irreversible severe environmental damage	4						_	_	
	Critical	Injury: severe injury, occupational illness, or permanent partial disability						-	Sev	erity	
2		Property damage: major damage to system; loss of major subsystem(s)								-	ole
		Environment: significant reversible environmental damage				Mishap Risk Assessment		-Catastrophic	-Critical	-Marginal	4—Negligible
		Injury: minor injury or occupational illness						Ü 	2—C	3—M	4-N
3	Marginal	Property damage: minor damage to camera or subsystem, recoverable with minimal impact on program			ſ		A—Fre quent	1	з	7	13
		Environment: mitigatible environmental damage, where restoration activities can be accomplished	Ī			iţ	B-Probable	2		9	16
	Negligible	Injury: minor first aid treatment; personal health not affected	Ī			Prboability	C—Possible	4	6	11	18
4		Property damage: more than normal wear and tear, easily recoverable within scope of standard maintenance					D—Remote	8	10	14	19
		Environment: minimal environmental damage		~	{		E-Improbable	12	15	17	20
		Theorem Bas is build at sourt	T					<u> </u>			
	Frequency of	Hazard Probability Level	+			1	5				I
Level	Occurrence	Definition			Mishap Risk			-			
А	Frequent	Likely to occur often in the life of the Camera					Risk Assessment Value	Description			
В	Probable	Will occur several times in the life of the Camera					1-5		High		
С	Possible	ossible Likely to occur sometime in the life of the Camera					6-9		Seriou	s	
D	Remote	Unlikely but possible to occur in the life of the Camera	ossible to occur in the life of the Camera 10-17				10-17	Medium			

18-20

Low

Improbable So unlikely, it can be assumed occurrence may not be experienced

CCS Hazards (LCA-15)


ID	Description	Mitigation	Level	Verification
98	Erroneous commands could result in unsafe behavior by various Camera components	Implement Camera Protection System (CPS) independent of CCS to prevent erroneous commands from causing hazardous responses by subsystem hardware	Medium	Generate erroneous commands under controlled conditions to verify that CPS prevents execution. Write test suites to verify that internal CCS logic prevents generation of erroneous commands.

- CCS has only one hazard
- CCS is designed to prevent erroneous behaviour independently of the Camera Protection System (CPS) -- while CCS is active it should never rely on the CPS
 - CCS can monitor state of CPS (so we know it has triggered)
 - CCS can issue resets to CPS (but these will be ignored if trigger still active)
- There have been no changes since PDR

Large Synoptic Survey Telescope

Programmatic Status

CCS Management

- Éric Aubourg (APC) -- CCS Physicist/Subsystem Lead
- Tony Johnson (SLAC) -- CCS System Architect and Cam
- Stuart Marshall (SLAC) -- Camera Integration Scientist, System Engineering, I&T

CCS Core Infrastructure

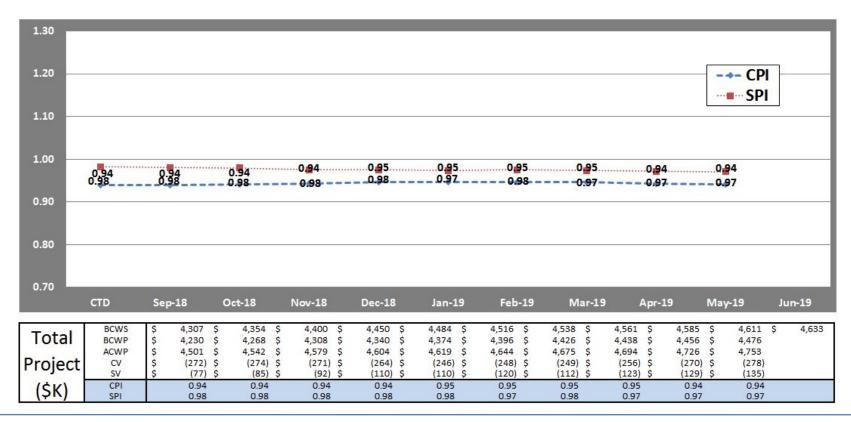
- Alexandre Boucaud (APC) -- Joined December 2018, Core/Filter Changer
- Dmitry Onoprienko (SLAC) -- Consoles/Core
- Max Turri (SLAC) -- Developer Tools/Core

CCS Subsystem Support

- Homer Neal (SLAC) -- BNL Test Stands, Focal Plane, ComCam
- Owen Saxton (SLAC) -- Refrigeration/Rafts, AuxTel, DAQ, Quadbox, Camera Body
- Steve Tether (SLAC) -- Shutter, BOT/Integration Gantry
- Françoise Virieux (APC) -- Filter Changer
- Al Eisener (Santa Cruz) -- Test stand support, ComCam Filer Changer
- Farrukh Azfar (Oxford) + Babak Abi (Oxford) -- PTP and OCS-Bridge
- Guillaume Dargaud (Grenoble) -- CCOB

- CCS cumulative SPI = 0.97

CCS cumulative CPI = 0.94


Control Account	BCWS	BCWP	ACWP	sv	SPI	cv	СРІ
3.07.01.01 CCS Integration & Management	\$982,807	\$982,807	\$931,471	(\$0)	1.00	\$51,336	1.06
3.07.01.02 CCS Core	\$1,784,281	\$1,846,054	\$1,888,126	\$61,773	1.03	(\$42,072)	0.98
3.07.01.03 CCS HCU	\$1,843,440	\$1,646,801	\$1,933,568	(\$196,639)	0.89	(\$286,767)	0.85
Total	\$4,610,527	\$4,475,661	\$4,753,165	(\$134,866)	0.97	(\$277,504)	0.94

CCS performance trend

CCS performance very stable, not surprising since we are ~90% complete

CCS HCUs -- cost variance: -\$286,767

- May 2019 The cost variance is caused by a combination of
 - earlier standing army costs caused by delays of other subsystems which we are coupled to (Shutter, I&T, SR in particular)
 - less contributed labor than initially planned for, as documented in our 2016/17/18 EACs
 - requests for additional CCS functionality in the test stands, in particular the need to add additional safety features to test stands
 - more complexities in cryo/refrigeration and shutter subsystem than anticipated.

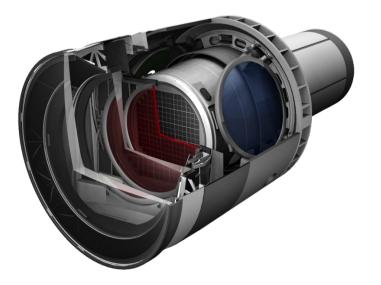
- CCS HCUs -- schedule variance: -\$196, 639

 May 2019 The schedule variance is being caused mainly by waiting on other camera subsystems which are (or were) behind schedule. We are continuing to actively work with the shutter and camera body subsystem to complete the remaining work as quickly and efficiently as possible. The camera rotator which we have been waiting for is now available in IR2 and we have been making good progress in testing it. A full DAQ system with DAQ v4.x software is now available in IR2 which will enable us to complete work on full focal-plane readout by the summer.

Comprehensive estimate at completion performed on 10/2018 (performed yearly)

No significant updates to EAC this year

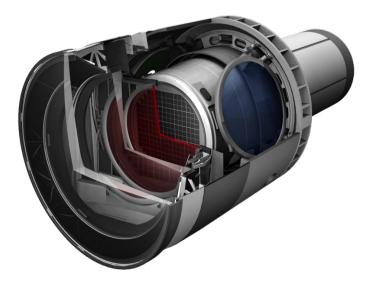
Control Account	BAC	EAC	VAC	% Comp	
3.07.01.01 CCS Integration & Management	\$1,083,374	\$1,105,359	(\$21,984)	91%	
3.07.01.02 CCS Core	\$2,127,699	\$2,015,296	\$112,403	87%	
3.07.01.03 CCS HCU	\$1,843,440	\$2,093,942	(\$250,502)	89%	
Total	\$5,054,513	\$5,214,596	(\$160,083)	89%	


EAC key drivers:

- CCS has had significant variances compared to the CD-3 baseline, but these are in line with the EAC estimate which we made in September 2016 and October 2017, and largely caused by the same issues:
 - Contributed manpower is less than anticipated at CD-3, resulting in increased cost
 - Departure of key developer Etienne Marin-Matholaz in Feb 2018.
 - Replaced by Alexandre Boucaud in November 2018, but need for APC group to concentrate on filter changer has prevented significant contribution to CCS code development
 - We have bought on new manpower from Oxford, Grenoble and Santa Cruz
 - Late requests for additional functionality, especially test stands
 - Delays in equipment availability from other subsystems, or late design changes Joint Status Review • Tucson • August 27th – 30th

Large Synoptic Survey Telescope

Summary



- In last year CCS has made major step forward in controlling
 - Many camera components in I&T cleanroom
 - ComCam initially at SLAC, very soon in Tucson
 - AuxTel in Tucson, including testing CCS/OCS interfaces
- Some camera work remains to be done, in particular integrated control of shutter+filter changer+utility trunk/cryo/camera
 - Schedule is in place for completing this work
 - CCS is on or close to critical path for several of these components
- Initial installation of CCS servers in Chile will occur before end of this year

Large Synoptic Survey Telescope

Supporting Material

Key Documents are Available on "Additional Docs" Tab in Confluence

- Key Documents & Reviews for the corner raft subsystem can be found at (contact the camera point of contact for access):
 - <u>https://confluence.slac.stanford.edu/display/LSSTCAMREV/Home</u>
- This site contains:
 - Project Documents
 - Design and Allocated Baseline Documents
 - Specifications
 - ICDs
 - Design Documents
 - Cost and Schedule Baseline
 - Design Reviews & Relevant Presentations
 - Preliminary Design Review
 - Other reviews
 - CCS Manuals