
LCA-10099-A LSST Camera Software Standards Page 1 of 7

Hard copies of this document should not be considered the latest revision beyond the date of printing.

Document No. Status ?

LCA-10099-A

Author(s)

J. Chiang

Design Standard
R. Dubois

Subsystem ?

Camera Control System, DAQ, Camera Data Management
Document Title

LSST Camera Software Standards

1 Change History Log

Revision Effective Date Description of Changes

A July 17, 2018 Initial draft release.
Release per LCN-1368.

2 Contents
1 Change History Log ... 1
2 Contents ... 1
3 List of Tables ... 2
4 Introduction.. 2
5 Applicable Documents and Reference Documents .. 2
6 Definitions ... 2

6.1 Acronyms ... 2
6.2 Definitions ... 3

7 Design Practices ... 3
7.1 Agile Software Development ... 3
7.2 Code Reviews .. 3

8 Implementation Practices ... 4
8.1 Coding Standards ... 4

8.1.1 C/C++ .. 4
8.1.2 Python .. 4
8.1.3 Java .. 4

8.2 External Dependencies... 4
8.2.1 Test Data Handling .. 4
8.2.2 CCS .. 4
8.2.3 DAQ ... 4

9 Supported Platforms .. 4
9.1 Data Formats .. 5
9.2 Code Management ... 5

9.2.1 Source control .. 5
9.2.2 Code release ... 5
9.2.3 Code distribution .. 5

LSST Camera
APPROVED

Effective Date
17 July 2018

LCA-10099-A LSST Camera Software Standards Page 2 of 7

Hard copies of this document should not be considered the latest revision beyond the date of printing.

9.3 Development environment ... 5
9.4 Build tools .. 5
9.5 Automated builds ... 5

10 Verification and Testing .. 5
10.1 Unit tests .. 5
10.2 System tests.. 6
10.3 Issue tracking ... 7

11 Documentation ... 7

3 List of Tables
Table 1: Acronyms List ... 2
Table 2: Definitions ... 3

4 Introduction
This document describes the policies, procedures, and criteria that the Camera project follows in the
development, configuration management, verification and validation, and quality assurance of the
Camera software.

5 Applicable Documents and Reference Documents
The following documents are cited for reference.

Ref # Document Number and Title

[1] LSE-13, LSST Software Quality Assurannce Guidelines

[2] LSE-14, LSST Sofware Configuration Managament Guidelines

[3] LSE-15, LSST Software Verification and Validation Guidelines

[4] LSE-16, LSST Software Development Plan

6 Definitions

6.1 Acronyms

Table 1: Acronyms List

Acronym Definition

BNL Brookhaven National Laboratory

CCS Camera Control Ssytem

DAQ Data Acquisition

FRS Functional Requirements Specification

ICD Interface Control Document

IN2P3 Institut National de Physique Nucleaire et de Physique des Particules

SLAC SLAC National Accelerator Laboratory

LCA-10099-A LSST Camera Software Standards Page 3 of 7

Hard copies of this document should not be considered the latest revision beyond the date of printing.

Acronym Definition

TBD To Be Determined

TBR To Be Resolved

TBS To Be Specified

TDH Test Data Handling

VST Vertical Slice Test

6.2 Definitions

Table 2: Definitions

Term Definition

DM Stack LSST Data Management software

7 Design Practices

7.1 Agile Software Development
Camera software design follows Agile software development practices
(http://en.wikipedia.org/wiki/Agile_software_development), especially the iterative and incremental
methodologies (http://en.wikipedia.org/wiki/Iterative_and_incremental_development) that call for
complex systems to be developed incrementally through several cycles wherein portions of the
functionality are added at each iteration and which go through a process of testing and evaluation and re-
adjustment of the requirements and design. For smaller components, where requirements and use case
analysis allows for functionality and interfaces to specified with sufficient detail, test driven
development methodologies (http://en.wikipedia.org/wiki/Test_driven_development) are employed to
drive the implementation.

7.2 Code Reviews
Software packages will undergo code reviews to ensure the overall package design and architecture
adheres to our software standards. Code reviews will occur when updates to packages are made that are
to be merged into the main branch for release.
The primary goals of a code review are to address the following questions:

• Does the code satisfy the design requirements?

• Explicit requirements for functionality

• Non-functional requirements like memory usage, performance, etc..

• Is the code maintainable?

• Understandable by a reasonable programmer

• Adequately documented

LCA-10099-A LSST Camera Software Standards Page 4 of 7

Hard copies of this document should not be considered the latest revision beyond the date of printing.

8 Implementation Practices

8.1 Coding Standards

8.1.1 C/C++
We have adopted CERN coding standards for C/C++:
http://pst.cern.ch/HandBookWorkBook/Handbook/Programming/CodingStandard/c++standard.pdf.
These and similar standards have been used successfully for large high energy physics experiments at
CERN, SLAC, Fermilab, and other DOE labs. They are familiar to Camera software developers, almost
all of whom have developed software for past HEP experiments.

8.1.2 Python
We use the Python coding standards by Guido van Rossum and Barry Warsaw,
http://www.python.org/dev/peps/pep-0008/. These are the industry standards for Python development
and are used by the developers of the Python language itself. LSST Data Management has adopted these
standards with minor revisions.

8.1.3 Java
We use the standard Java coding conventions:
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf.

8.2 External Dependencies

8.2.1 Test Data Handling
External libraries will comprise industry-standard third-party packages that supply the required
functionality. For producing data products, the cfitsio library (http://heasarc.gsfc.nasa.gov/fitsio/) will be
used. The following third-party Python modules will be used to provide plotting, numerical algorithms,
and FITS-file and database access: matplotlib, numpy, scipy, pyfits, MySQL-Python. Finally, the LSST
Data Management software will be used for analysis of the pixel data acquired at the sensor-level
through the full focal plane. The DM stack also contains or uses many of the aforementioned libraries.

8.2.2 CCS
We use maven to manage/download external Java dependencies. The design philosophy is to try to have
service layers to isolate subsystem code from specific external dependencies (e.g. JMS, JGroups) to
allow migration to new external dependencies as appropriate in future. We have some native code
dependencies (for example the DAQ interface libraries) which are currently handled in an ad-hoc way.

8.2.3 DAQ
TBS.

9 Supported Platforms
The platforms for development and production work will be Redhat 5/Scientific Linux 5 (64 bit) and
Redhat 6/Scientific Linux (64 bit). These are the posix-based operating systems supported at SLAC for
interactive and batch use.

LCA-10099-A LSST Camera Software Standards Page 5 of 7

Hard copies of this document should not be considered the latest revision beyond the date of printing.

9.1 Data Formats
FITS (Flexible Image and Transport System) will be used for image (and tabular) data
(http://fits.gsfc.nasa.gov/fits_standard.html). This is the standard data format for all astronomical data.
The Sensor group has developed a set of filename, header, and directory structure standards
(https://docushare.lsstcorp.org/docushare/dsweb/Get/LCA-10140/EOTest_File_Spec_v1.doc).

9.2 Code Management

9.2.1 Source control
The git repository at git@git.lsstcorp.org will be the repository for all Camera code. git is an open
source tool which manages files and directories and the changes made to them over time allowing the
recovery of older versions of an object or the examination of how the object changed.

9.2.2 Code release
TBD.

9.2.3 Code distribution
TBD.

9.3 Development environment
In accord with the open-source requirement for all LSST production code, we will use the Gnu Compiler
Collection for C/C++ code. Specific editors or IDEs are not mandated.

9.4 Build tools
We use the industry standard build tools, SCons for C/C++ and Python and Maven for Java.

9.5 Automated builds
The Camera software will be use the Jenkins Continuous Integration tool (http://jenkins-ci.org/) for
ensuring that the various Camera software components inter-operate correctly with one another. Jenkins
is an application that enables building and testing of software projects continuously, as new
development is added to the project.

10 Verification and Testing

10.1 Unit tests
The scope of unit testing is to verify the design and implementation of all components from the lowest
level defined in the detailed design up to and including the lowest level in the architectural design. The
inputs to the unit testing process are the successfully compiled modules. These are iteratively assembled
and tested during unit testing until the unit test validates components in the architectural design. The
successfully unit tested architectural design components are the outputs of unit testing process. LSST
Camera software generally uses a bottom-up assembly sequence to iteratively compose each
architectural component.

LCA-10099-A LSST Camera Software Standards Page 6 of 7

Hard copies of this document should not be considered the latest revision beyond the date of printing.

The unit test description should provide the sequence for assembling the architectural design units and
the types of tests necessary for individual modules.
The Unit Test Plan's test cases should be developed from the detailed design of the baseline. The type of
tests performed during unit testing may include:

• White-box Tests: designed by examining the internal logic of each module and defining the input
data sets that force the execution of different paths through the logic. Each input data set is a test
case.

• Black-box Tests: designed by examining the specification of each module and defining input data
sets that will result in different behavior (e.g. outputs). Black-box tests should be designed to
exercise the software for its whole range of inputs. Each input data set is a test case.

• Performance Tests: if the detailed design placed resource constraints on the performance of a
module, compliance with these constraints should be tested.

xUnit compliant (or near-compliant) test frameworks will be used: boost.test, unittest, JUnit.

10.2 System tests
The scope of system testing is to verify compliance with the system objectives as stated in the FRS. A
test should be defined for every essential software requirement, and for every desirable requirement that
has been implemented. The input to system testing is the successfully integrated system.
The System Test Plan's test cases will be developed from the FRS requirements selected for the baseline.
Black-box and other types of test should be used wherever possible. When a test of a requirement is not
possible, an alternative method of verification should be used. The type of tests performed may include:

• Function Tests should be designed using techniques such as decision tables, state-transition tables
and error guessing to verify the functional requirements.

• Performance Tests should be designed to verify:

• that all worst case performance targets have been met;

• that nominal performance targets are usually achieved;

• whether any best-case performance targets have been met; and

• should be designed to measure the absolute limits of performance.

• Interface Tests should be designed to verify conformance to external interface requirements.
Interface Control Documents (ICDs) form the baseline for testing external interfaces. Simulators
will be necessary if the software cannot be tested in the operational environment.

• Usability Tests should verify the user interface, man machine interface, or human computer
interaction requirements,and logistical and organizational requirements.

• Load Tests should be designed to verify requirements for the usage of resources such as CPU
time, storage space and memory. The best way to test for compliance is to allocate these resources
and no more, so that a failure occurs if a resource is exhausted.

• Security Tests should check that the system is protected against threats to integrity and
availability. Tests should be designed to verify that basic security mechanisms specified in the
System Engineering Requirements have been provided.

LCA-10099-A LSST Camera Software Standards Page 7 of 7

Hard copies of this document should not be considered the latest revision beyond the date of printing.

• Compatibility Tests should attempt to verify portability by running a representative selection of
system tests in all the required environments.

• Stress tests evaluate a system at or beyond the limits of its specified requirements. Testers should
look for inputs that have no constraint on capacity and design tests to check whether
undocumented constraints do exist.

10.3 Issue tracking
Reporters of anomalous behavior of Camera software should use the JIRA
(https://jira.slac.stanford.edu/secure/Dashboard.jspa) issue tracking system. The workflow of the issue
life cycle from inception to resolution is recorded within the JIRA system.

11 Documentation
The industry standard Doxygen tool (http://www.stack.nl/~dimitri/doxygen/) will be used for code-level
documentation of C++ and Python code. This documentation will be generated for each software
release. Following standard conventions, Python doc-strings will be used to provide a minimal amount
of user-level documentation.

	1 Change History Log
	2 Contents
	3 List of Tables
	4 Introduction
	5 Applicable Documents and Reference Documents
	6 Definitions
	6.1 Acronyms
	6.2 Definitions

	7 Design Practices
	7.1 Agile Software Development
	7.2 Code Reviews

	8 Implementation Practices
	8.1 Coding Standards
	8.1.1 C/C++
	8.1.2 Python
	8.1.3 Java

	8.2 External Dependencies
	8.2.1 Test Data Handling
	8.2.2 CCS
	8.2.3 DAQ

	9 Supported Platforms
	9.1 Data Formats
	9.2 Code Management
	9.2.1 Source control
	9.2.2 Code release
	9.2.3 Code distribution

	9.3 Development environment
	9.4 Build tools
	9.5 Automated builds

	10 Verification and Testing
	10.1 Unit tests
	10.2 System tests
	10.3 Issue tracking

	11 Documentation

