
Introducing 
rubin_sim

Peter Yoachim
University of Washington

The Second SCOC-Science Collaborations Workshop, Nov 2021



https://github.com/lsst/rubin_sim



Our new package rubin_sim consolidates lots of repos that 
were previously scattered around the lsst sims

• No more DM stack dependencies, much easier to install
• Easier to work on the code, only one pull request needed
• We have CI for building docs and running unit tests



No more installing with 
EUPS! 

If you have anaconda 
python, just clone and 
pip install



Data

• Dust maps
• Stellar density maps
• Solar system population orbits
• Filter curves
• Baseline survey strategy
• Sky brightness files
• MAF data—light curve shapes, etc



photUtils

SED and Bandpass classes

If you want to get the 
magnitude of an SED as 
observed by Rubin



Site_models

• Cloud history
• Seeing history
• Downtime models
• Almanac info (sun/moon rise/set)



Skybrightness, skybrightness_pre

Uses ESO sky brightness plus 
twilight component to model sky 
brightness.

Computing the sky is the most
computationally expensive part
of scheduler simulations, so we
have the pre-computed data as 
well (~200 Gb)



Scheduler

• Model observatory
• Scheduler 
• Utils for running cadence simulations



MAF

Our framework for analyzing 
survey pointing histories. 



movingObjects

Tools for matching solar system objects to observations



Utils

• Coordinate transformations
• HEALpix utilities
• SNR functions
• Handy Rubin specific values
• DDF locations
• Site location
• Camera footprint
• Telescope zeropoints



What’s changed in the migration to an independent package?

Not much. 

• Now use the full focal plane with gaps by default in MAF
• Minor update to dithering in the scheduler (ensures proper 

dithering if we stop and restart)

This does mean you can’t do perfect apples-to-apples 
comparison of old MAF analysis and old simulations with 
current MAF and sims



How to contribute

• Fork rubin_sim on github (creates your own copy of the repository)
• Clone the forked repo to your work area, edit code there
• Add your code to your forked repo (git add … ; git commit …) and push 

changes to your forked repo as usual (git push)
• Issue a pull request (PR) from your fork to the lsst/rubin_sim repository

We also have https://github.com/lsst/rubin_sim_notebooks

With example notebooks. It’s great if folks can also add a notebook
demonstrating their code. Jupyter notebooks are nice because you
can add text, LaTeX, links, embed plots, etc.

https://github.com/lsst/rubin_sim_notebooks


Upcoming work on rubin_sim
• New metrics from the community
• Updates for survey operations
• Faster 1-day simulation
• swap out historical seeing, etc for real telemetry

• Always need more documentation
• Better formatting uniformity (pep8, camel_Case, etc)
• Check unit test coverage, deprecate unused scheduler classes

Hopefully being easier to install means the community doesn’t 
have to rely as much on services like NOIRlab and can install and 
develop code locally.


