

Recognizing the Unrecognized Blends

Shuang Liang Rubin Observing Specialist

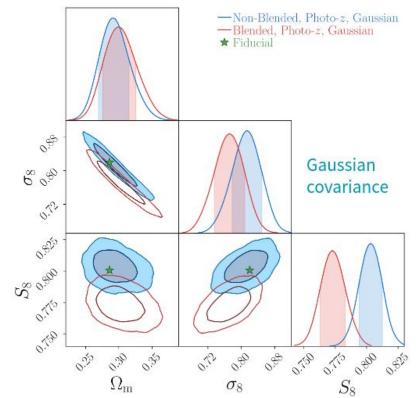
Project & Community Workshop 08 Aug 2023

Recognized vs. Unrecognized Blends

- Recognized Blends: Overlapping objects but correctly identified, and assigned with reconstructed properties ("deblended").
 - Photo-z impacted by photometry
 - Shape estimate is noisy
 - Most deblenders assume correct detection of peak counts
- Unrecognized Blends: Objects overlapping too much, detected as one object.
 - Colors can be weird
 - Shape is usually wrong

— Detection — Truth		Recognized Blends?		
		No	Yes	
Unrec- Blends?	No			
	Yes			

How Bad Are Unrecognized Blends?

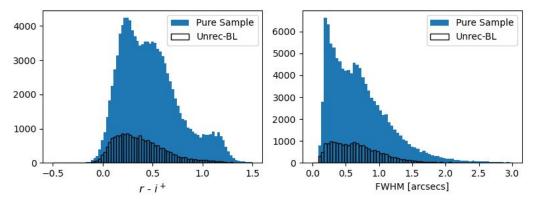


- Dawson et al. 2016: 14% "ambiguous" (unrecognized) blends at $i \sim 25.3$
- We find: more than that, depending on the definition

Unrecognized blends can cause:

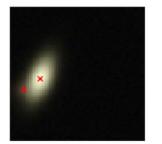
- 0.025 decrease in S_8 through cosmic shear at i < 24 (E. Nourbakhsh et al. 2022; slides)
- $1\sim2\sigma$ difference in galaxy clustering 2pt correlations on DC2 (B. Levine et al. 2023 (in prep); slides)
- 20% drop in cluster shear profile (M. Ramel et al, DESC Project 284; slides)

Detecting Unrecognized Blends with ML



Catalog-based (this talk):

- Use Machine Learning to capture unique color/morphology combination of blends
- Fast, but heavily affected by image processing pipeline



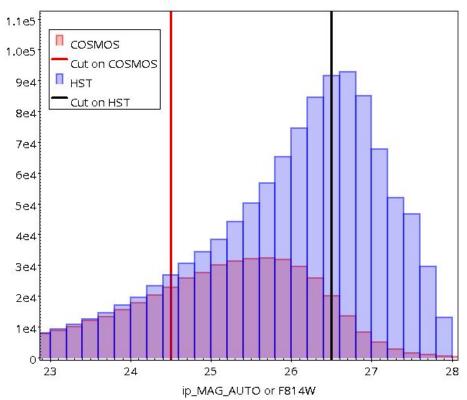


Pixel-level detection:

- Use Machine Learning to detect color gradient within an object (dipole-like model residual)
- Computation-intensive

Image: S. Kamath 2020 (Ph.D. Thesis)

Catalog-based Detection: Data Set



Ground-based observation: The COSMOS catalog (Laigle et at. 2016)

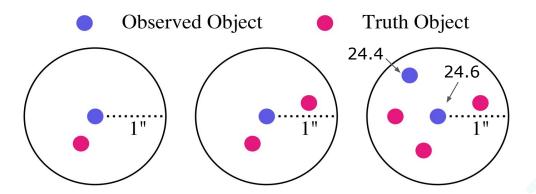
- Precise photo-z from 30 band photometry
- Depth and PSF comparable to LSST gold sample
- No shape measurement, only size

"Truth" catalog: HST coverage of the COSMOS field (Koekemoer et al. 2007)

- Awesome resolution
- Deep, but not deep enough for <2 mag blends → pushes to a <24.5 mag cut on COSMOS

Spec-z: A compilation of <u>C3R2</u> + <u>zCOSMOS</u> + <u>DEIMOS</u> + <u>VUDS</u>; ~20,000 matched spectra

Catalog Matching: A Hidden Pitfall

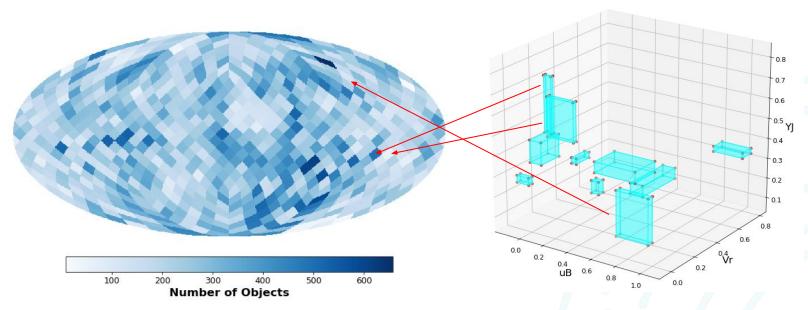


ANY selection applied to the ground-based catalog pre-matching can lead to mis-labeling of unrecognized blends! The selection includes (but not limited to):

- Magnitude / SNR cut
- Star/galaxy separation
- Photometry quality flags: saturation, bleeding, cosmic-ray, satellites, bad pixel/column, truncation, ...

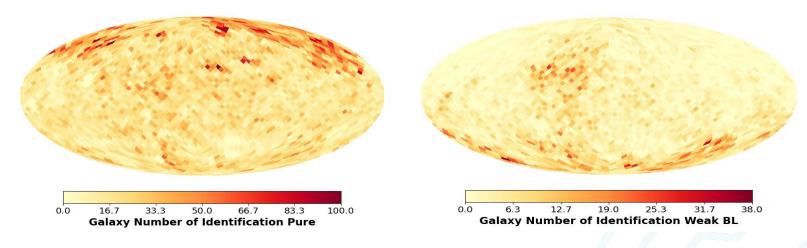
Takeaway: Match first, then select!

SOM: A Map from N-d Features to 2-d



A self-organizing map (SOM) is an unsupervised neural network designed to represent a high-dimensional data set with a low-dimension (usually 2-d) map. SOM is **topology-preserving**, meaning galaxies with similar high-dimensional features are close to each other in the 2-d map.

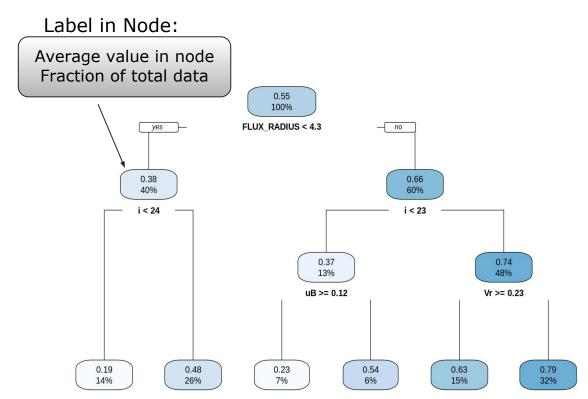
Detecting Unrecognized Blends with SOM **SLAC**



Using Features (uB, BV, Vr, ri^+ , i^+z^{++} , i^+ , FWHM, $z^{++}Y$, YJ, JH) for training Using Features (uB, BV, Vr, ri^+ , i^+z^{++} , i^+ , FWHM) for detecting unrec-bl

Pure sample and Unrec-BL occupy very different regions in SOM! Unique features detected! 🞉 🎉 🎉

Detecting Unrec-BL with Random Forest



Using Features (uB, BV, Vr, ri⁺, i⁺z⁺⁺, *i*+, FWHM)

The training sample is labeled with:

0 = Pure

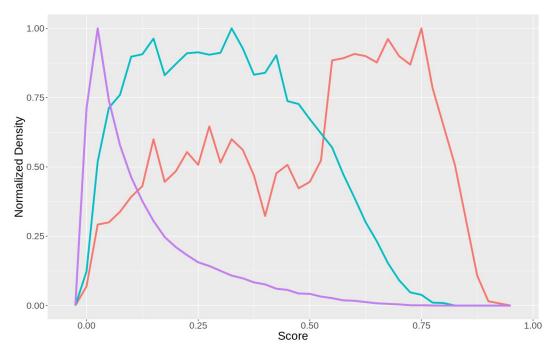
1 = Unrecognized Blend

Each tree gets a subsample of training data and feature.

Each node maximizes the split of 0s and 1s

Each object in validation sample will get a score in a "leaf" from each tree, to be averaged out (voting) among trees for a final score

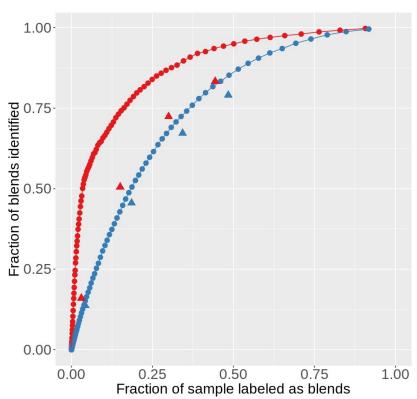
Score Histogram on Validation Sample



- pure
- weak blends, $|\text{mag}_i_{\text{obs}}$ $|\text{mag}_i_{\text{truth}}| < 2$
- strong blends, $|mag_{obs}^{-} mag_{i_{truth}}| < 1$

Pure sample and Unrec-BL getting very different scores!
Unique features detected!

Results From Both ML algorithms



At a depth of *i*<24.5, we can identify the majority of unrec-bl at very small cost!

• : using Random Forest

▲ : using Self-organizing Map

 \blacktriangle •: strong blends, $|\text{mag}_i_{\text{obs}}$ - $|\text{mag}_i_{\text{truth}}| < 1$

▲ •: weak blends, $|\text{mag}_{obs}$ - $\text{mag}_{truth}| < 2$

P. Adari et al. 2023 (in prep)

So You Think Your ML Algorithm Works Better **SLAC**

But what is better?

- ML is only as good as your training sample
- How to best define "unrecognized blends"?
 - Counting number of sources in a matching group (e.g. <u>FoF</u>)
 - Checking for overlapping of isophotes (e.g. <u>Friendly</u>)
 - Flux-weighted statistics (e.g. "purity" from <u>J. Sanchez+2021</u>)

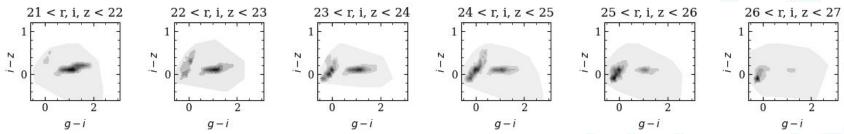
What kind of unrec-bl causes more trouble? Those with larger "bias" of:

- Shape measurement: what is the "true shape"?
- Photo-z estimation: what is the "true redshift"?
- What is a good non-one-to-one metric? (<u>lost-and-found</u>)
- Is the ultimate metric cosmology inference the only good metric?

Continuing Efforts

Try a deeper catalog of:

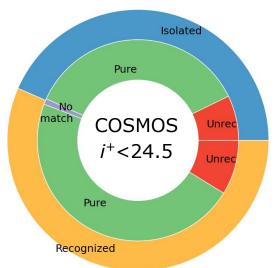
- Real data? No truth catalog as deep as 25.3+2=27.3 mag yet
- Simulation? Can we trust the color distribution?
 - Ongoing: use SYNTHETIC (git) for an LSST full depth simulation

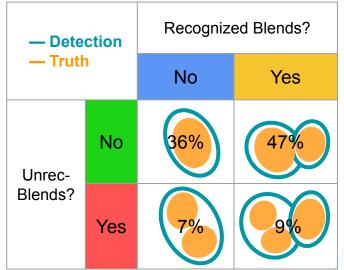


Unrec-BL **x** shear response:

- Metadetect: too much trouble; we might not be there yet
- BFD: seems possible; need more thoughts
- <u>FPSF</u>: Amazingly, it is possible to consider the selection (removal) of unrec-bl with an analytical shear response pipeline! (Only for SOM)

(backup) Catalog Matching: Some Numbers **SLAC**





	Total	Recognized	Isolated	Pure	Weak BL	Strong BL
Num. Sources	138849	78457	60392	116471	22378	5326
Pure Fraction	83.0%	83.1%	82.8%	100%	0%	0%
Num. Spectra Match	17935	12592	5343	16542	1393	318
Num. Photo-z Outliers	480	399	81	383	97	34
Outlier Fraction	2.68%	3.17%	1.52%	2.32%	6.96%	10.7%

Takeaways:

- 9% is more than 7%!
- **Unrec-BLs have high** photo-z outlier rate

We define two types of unrecognized blends:

Weak:
$$|\text{mag}_i_{\text{obs}} - \text{mag}_i_{\text{truth}}| < 2$$

Strong: $|\text{mag}_i_{\text{obs}} - \text{mag}_i_{\text{truth}}| < 1$

Figures and Tables on this page show weak blends unless specified.