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• Rubin	LSST	will	rely	on	photometric	redshi.s	for	
almost	all	extragalac5c	analyses	
• AGN,	cosmology,	galaxies,	strong	lensing,	
iden5fica5on	of	transient	hosts...	

• In	a	recent	Annual	Reviews	ar5cle,	Daniel	Gruen	
and	I	describe	key	challenges	for	photo-z's	for	
Rubin	LSST	and	other	future	surveys	(Links:	
h%ps://www.annualreviews.org/doi/abs/10.1146/
annurev-astro-032122-014611		or	h%ps://arxiv.org/abs/
2206.13633	)	

Achieving	the	full	poten5al	of	next-genera5on	surveys	like	LSST	via	photometric	
redshi.s	presents	many	challenges...	

https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-032122-014611
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-032122-014611
https://arxiv.org/abs/2206.13633
https://arxiv.org/abs/2206.13633


• Our	review	ar5cle	focuses	on	ways	we	
need	to	improve	both	the	performance	
of	photo-z	algorithms	and	the	
characteriza5on	of	redshi.	distribu5ons	

• The	performance	of	an	algorithm	is	how	
well	we	can	predict	the	redshi.s	and	
other	proper5es	of	individual	objects	
• NMAD,	catastrophic	outlier	rate,	etc.	

are	measures	of	performance	
• Photo-z	performance	will	affect	Rubin	

galaxy	science	in	many	ways	--	see	my	
talk	in	the	Galaxies	session!

In	what	ways	do	we	want	to	improve	photo-z's	for	Rubin	LSST?



• The	characteriza5on	of	redshi.	distribu5ons	is	
how	well	we	know	the	distribu5on	of	redshi.s	for	
any	sample	of	interest	
• 	E.g.:	the	mean,	variance,	etc.	of	the	redshi.	

distribu5on	of	objects	placed	in	a		bin	for	
analysis	

• Uncertain5es	in	the	moments	of	z	distribu5ons	
must	be	<0.1%	to	not	dominate	over	random	
errors	in	Rubin	cosmology	analyses

Figure:	Zuntz	et	al.	2022

In	what	ways	do	we	want	to	improve	photo-z's	for	Rubin	LSST?



BeHer	spectroscopic	datasets	can	greatly	improve	the	science	yield	of	LSST

• For	machine	learning-based	methods,	we	use	objects	
with	secure	redshi.	measurements	from	
spectroscopy	to	train	algorithms	

• For	template-based	methods,	they	are	used	to	refine	
models	of	galaxy	spectral	energy	distribu5ons	

• A	baseline	spectroscopic	training	set	for	Rubin	LSST	
would	consist	of	deep	spectroscopy	of	>20,000	objects	
over	a	broad	sky	area	with	spectra	spanning	the	full	
op5cal	window		

• Support	for	such	ac5vi5es	was	recommended	in	the	
Snowmass	Cosmic	Fron5er	report		

• See	the	Snowmass	CF4	and	CF6	reports	and	the	white	
paper	Enabling	Flagship	Dark	Energy	Experiments	to	
Reach	their	Full	Poten5al	(Blazek	et	al.)

Newman et al. 2019
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https://arxiv.org/abs/2204.01992
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The	DESI	instrument	could	be	an	efficient	op5on	for	obtaining	this	data

• In	test	spectroscopy	with	DESI,	we	obtained	
a	redshi.	measurement	success	rate	in	1.5	
hours	median	exposure	5me	to	similar	to	
what	is	achieved	in	1	hour	with	DEIMOS	at	
the	Keck	Observatory	(Dey	et	al.	2023,	in	
prep.;	see	his	talk	in	the	session	tomorrow!)	

• Implies	that	DESI	could	complete	a	baseline	
photo-z	training	survey	to	LSST	Year	1	depth	
in	20-30	dark	nights	

• 200-300	nights	to	full	Year	10	depth

Dey et al. 2023, in prep.



A	Stage	V	Spectroscopic	Facility	would	be	ideal	for	obtaining	full-depth	LSST	
training	sets

• "Spec-S5":	a	high	priority	from	the	Snowmass	Cosmic	
Fron5er	report	

• Example	concepts:	MegaMapper,	the	Maunakea	
Spectroscopic	Explorer,	ESO	Wide-field	Spectroscopic	
Telescope	(WST)	
• 6.5-12m	telescope,	1.5-7.5	sq.	deg.	field	of	view,	

20k-50k	fiber	posi5oners	
• Would	be	able	to	explore	dark	maHer,	dark	energy,	

cosmic	infla5on,	and	Milky	Way	structure,	all	
simultaneously	

• Rubin	LSST	data	would	play	a	key	role	in	target	selec5on	
• Scaling	from	DESI,	could	obtain	baseline	LSST	photo-z	

training	sample	to	full	survey	depth	in	20-60	nights!



Conclusions

• Rubin	Observatory	LSST	will	provide	a	dataset	
of	unprecedented	constraining	power...	

• but	extrac5ng	full	value	from	that	data	will	
require	both	improved	methods	and	beHer	
spectroscopic	training	sets	

• A	DESI-2	program	and	Spec-S5	could	play	key	
roles	in	enabling	these	improvements	

• For	lots	more	details,	see	our	ARAA	ar5cle!	
• Journal	version:	h%ps://

www.annualreviews.org/doi/abs/10.1146/
annurev-astro-032122-014611			

• ArXiv	version	(with	some	formasng	
advantages):	h%ps://arxiv.org/abs/2206.13633	

https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-032122-014611
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-032122-014611
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-032122-014611
https://arxiv.org/abs/2206.13633
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Real-world	datasets	fall	short	of	this	ideal	in	many	ways:

• Spectroscopic	samples	of	faint	
galaxies	tend	to	be	small:	sparsely	
sample	the	underlying	distribu5on	

• When	spectroscopy	is	obtained	over	
small	areas	of	sky,	density	
fluctua5ons	in	the	universe	cause	
some	redshi.s	to	be	over-	or	under-
sampled

Figures:	Newman	&	Gruen	2022



Real-world	datasets	fall	short	of	this	ideal	in	many	ways:

• Some	popula5ons	of	galaxies	are	
difficult	to	measure	redshi.s	for,	and	
end	up	missing	from	the	
spectroscopic	samples	

• Fail	10-40%	of	the	5me

• 0.5-5	percent	of	the	5me	(depending	
on	sample),	spectroscopic	redshi.	
es5mates	are	badly	incorrect	

• Leads	to	mis-training	or	inaccurate	
characteriza5on

Figures:	Newman	&	Gruen	2022



BeHer	methods,	and	beHer	datasets,	will	be	needed	to	make	op5mal	use	of	Rubin	
Observatory	data
• An	example	of	challenges	we	are	working	

on:	how	to	get	well-calibrated	probability	
distribu5ons	for	the	redshi.	of	an	
object?	

• Result:	the	Cal-PIT	algorithm	(Dey,	JN	et	
al.	2021;	Dey,	Zhao,	JN	et	al.	2022)  

• Basic	idea:	recalibrate	PDFs	so	that	the	
frac5on	of	5mes	the	true	value	falls	
within	the	limits y1 and y2 =	the	integral	
of	the	PDF	between	these	limits	(PIT)	

• Recalibrates	via	regression	as	a	
func5on	of	posi5on	in	parameter	
space:	local,	not	global,	correc5on 

• Such	methods	can	be	useful	for	ML-
based	inference	across	many	fields

• A.er	recalibra5on,	P-P	plot	approaches	
diagonal	(ideal)	and	PIT	distribu5on	
becomes	flat	(as	for	a	true	PDF)

https://arxiv.org/abs/2110.15209
https://arxiv.org/abs/2110.15209
https://arxiv.org/abs/2205.14568


• Ideal	case:	we	obtain	redshi.s	for	objects	
densely	and	evenly	sampling	the	distribu5on	
of	galaxies	in	SED	space	

• Here,	a	toy	model:	e.g.,	what	you	would	get	
dimensionality-reducing	SED	space	to	2D	

• Can	easily	determine	redshi.	at	any	point	
from	redshi.s	of	objects	in	the	local	
neighborhood

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	1)	
sparse	sampling
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• Real	world:	if	we	want	spectroscopy	of	faint	
galaxies,	sample	sizes	will	be	small	and	will	
only	sparsely	cover	SED	space	

• The	objects	with	spectroscopy	in	the	same	
neighborhood	may	not	be	all	that	close...



• Ideal	case:	the	redshi.s	in	your	spectroscopic	
training	set	have	a	redshi.	distribu5on	
matching	the	overall	average	across	the	sky

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	2)	
sample	/	cosmic	variance
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• Real	world:	Deep	training	sets	are	obtained	
over	only	small	areas	of	sky	

• The	selected	regions	will	be	overdense	or	
underdense	at	some	redshi.s	due	to	large-
scale	structure	

• This	can	easily	imprint	on	redshi.	
distribu5ons	across	the	sky	with	ML	methods



• Ideal	case:	every	galaxy	you	target	for	
spectroscopy	provides	a	secure	measurement	
of	its	redshi.

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	3)	
systema5c	incompleteness
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• Real	world:	When	we	target	faint	samples,	we	
fail	to	measure	the	redshi.	~30%	or	more	of	
the	5me	

• The	objects	we	do	get	redshi.s	for	are	
systema5cally	different	in	proper5es	
(including	redshi.)	than	the	things	we	
succeed	for
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• Ideal	case:	every	5me	you	measure	the	
redshi.	spectroscopically	you	get	the	
correct	z

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	4)	
incorrect	redshi.s
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• Real	world:	Depending	upon	the	sample,	
0.5%-10%	of	redshi.	measurements	will	be	
incorrect	

• E.g.:	misiden5fied	a	single	emission	line,	or	
mistook	sky	subtrac5on	residuals	for	lines	

• Need	robust	ML	methods	for	photometric	
redshi.s
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Cleaner z

Figure:	Coil	
et	al.	2010



• Ideal	case:	you	can	just	use	redshi.s	from	
pre-exis5ng	spectroscopic	surveys	and	don't	
need	to	obtain	any	new	measurements

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	5)	
color	selec5ons
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• Real	world:	Most	large	high-z	surveys	rely	on	
color	cuts	to	target	a	limited	redshi.	range	of	
interest	

• Heterogeneous	coverage	of	color	space	is	a	
major	problem	in	photo-z	training	and	
calibra5on

Figure:	
Newman	et	al.	
2013



• Ideal	case:	Training	samples	provide	good	
coverage	across	all	possible	redshi.s

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	6)	
difficul5es	training	at	very	low	z
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• Real	world:	The	universe	has	liHle	volume	at	
low	redshi.s	so	low-z	galaxies	are	rare	in	
magnitude-limited	samples	

• Since	they	are	poorly	represented	in	training	
sets	photo-z	algorithms	tend	to	disfavor	low	z	
solu5ons

Figure:	
MSE	team	/	
Yao-Yuan	
Mao



• Nope...		

• Kodra	et	al.	2022	tested	many	
template-based	methods	applied	to	
CANDELS	data	

• Methods	that	all	agree	well	with	
spec-z's	where	we	have	them	predict	
very	different	redshi.	distribu5ons	
vs.	magnitude,	from	the	same	data

Do	template-based	photo-z's	solve	these	problems	by	being	less	dependent	on	
training	sets?

data arrays (logspace z): GOODS-S

Figure : Linear color scale, excluded objects: 417Figure:	Kodra	et	al.	2023



If	we	restrict	to	the	most-secure	redshi.s,	much	more	of	color	space	is	untrained	by	
current	samples

• Grey	regions:	cells	in	self-organized	maps	of	galaxy	color	space	that	
are	not	constrained	by	spectroscopic	redshi.s	10

Fig. 6.— Left: The median spectroscopic redshift of galaxies associating with each SOM cell, using only very high confidence (∼100%)
redshifts from the COSMOS master spectroscopic catalog (Salvato et al., in prep). The redshifts come from a variety of surveys that have
targeted the COSMOS field; see text for details. Gray regions correspond to parts of galaxy color space for which no high-confidence
spectroscopic redshifts currently exist. These regions will be of interest for training and calibration campaigns. Right: The same figure,
but including all redshifts above !95% confidence from the COSMOS spectroscopic catalog. Clearly, more of the color space is filled in
when the quality requirement is relaxed, but nevertheless large regions of parameter space remain unexplored.

The preceding analysis treats the photo-z calibration
as a stratified sampling problem, in which the overall
statistics of a population are inferred through targeted
sampling from relatively homogeneous subpopulations.
The gain in statistical precision from using Equation (10)
to estimate 〈z〉 can be attributed to the systematic way
in which the full color space is sampled, relative to blind
direct sampling. However, stratified sampling will only
outperform random sampling in the case that the sub-
populations being sampled do, in fact, have lower disper-
sion than the overall distribution–i.e., in the case that the
Pi(z) distributions for the color cells have lower redshift
dispersion than the N(z) distribution of all the galaxies
in a tomographic bin.

6.2. Simulating different sampling strategies

Now we attempt to more realistically estimate the
spectroscopic coverage needed to achieve the requirement
in our knowledge of 〈z〉. To begin, we assume that the
cell redshift PDFs from Le Phare are reasonably accu-
rate, and can be taken to represent the true Pi(z) distri-
butions for galaxies in each color cell. (This assumption
is, of course, far from certain, and simply serves as a
first approximation). With the known occupation den-

sity of cells of the map (Figure 3), we can then use Equa-
tion (8) to generate realistic N(z) distributions for differ-
ent tomographic bins. For this illustration, we break the
map up into photo-z-derived tomographic bins of width
∆z = 0.2 over 0 < z < 2 (although Euclid will most
likely use somewhat different bins in practice). An ex-
ample of one of the N(z) distributions modeled in this
way is shown in Figure 8.
The uncertainty in the estimated 〈z〉 of these N(z) dis-

tributions can then be tested for different spectroscopic
sampling strategies through Monte Carlo simulations, in
which spectroscopy is simulated by randomly drawing
from the Pi(z) distributions. (Alternatively, given our
knowledge of the individual σ〈zi〉 uncertainties, Equa-
tion (11) can be used directly. In fact, the results were
checked in both ways and found to be in agreement).
The results of three possible sampling strategies are

given in Table 1. The simplest strategy tested (“Strategy
1”) is to obtain one spectrum per color cell in order to
estimate the cell mean redshifts. Equation (10) is then
used to compute the overall mean of the tomographic
bin. We expect to meet the Euclid requirement, ∆〈z〉 ≤
0.002(1+〈z〉), for 3/10 bins (and come close in the others)
with this approach, which would require ∼11k spectra in

Masters	et	al.	2015
cells with <1% failure rate z's with <5% failure rate z's


