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Achieving the full potential of next-generation surveys like LSST via photometric

redshifts presents many challenges...

e Rubin LSST will rely on photometric redshifts for
almost all extragalactic analyses

e AGN, cosmology, galaxies, strong lensing,
identification of transient hosts...

* In a recent Annual Reviews article, Daniel Gruen
and | describe key challenges for photo-z's for

Rubin LSST and other future surveys (Links:
https://www.annualreviews.org/doi/abs/10.1146/
annurev-astro-032122-014611 or https://arxiv.org/abs/

2206.13633 )
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Abstract

Photometric redshifts are essential in studies of both galaxy evolution
and cosmology, as they enable analyses of objects too numerous or
faint for spectroscopy. The Rubin Observatory, Euclid, and Roman
Space Telescope will soon provide a new generation of imaging surveys
with lented area coverage, length range, and depth. To
take full advantage of these datasets, further progress in photometric
redshift methods is needed. In this review, we focus on the greatest
common challenges and prospects for improvement in applications of
photo-2’s to the next generation of surveys:
o Gains in performance — ie., the precision of redshift estimates
for individual galaxies — could greatly enhance studies of galaxy
evolution and some probes of cosmology.

o Improvements in characterization — i.e., the accurate recovery of
redshift distributions of galaxies in the presence of uncertainty on
individual redshifts — are urgently needed for cosmological mea-
surements with next-generation surveys.

.

To achieve both of these goals, improvements in the scope and
treatment of the samples of spectroscopic redshifts which make
high-fidelity photo-2z’s possible will also be needed.

For the full potential of the next generation of surveys to be reached,
the characterization of redshift distributions will need to improve by
roughly an order of magnitude compared to the current state of the
art, requiring progress on a wide variety of fronts. We conclude by pre-
senting a speculative evaluation of how photometric redshift methods
and the collection of the necessary spectroscopic samples may improve
by the time near-fut surveys are leted
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In what ways do we want to improve photo-z's for Rubin LSST?

e Our review article focuses on ways we
need to improve both the performance
of photo-z algorithms and the
characterization of redshift distributions

e The performance of an algorithm is how
well we can predict the redshifts and
other properties of individual objects

e NMAD, catastrophic outlier rate, etc.
are measures of performance

e Photo-z performance will affect Rubin
galaxy science in many ways -- see my
talk in the Galaxies session!
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In what ways do we want to improve photo-z's for Rubin LSST?

e The characterization of redshift distributions is
how well we know the distribution of redshifts for
any sample of interest

e E.g.: the mean, variance, etc. of the redshift
distribution of objects placed in a bin for

analysis =

e Uncertainties in the moments of z distributions g
must be <0.1% to not dominate over random ©
errors in Rubin cosmology analyses
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Better spectroscopic datasets can greatly improve the science yield of LSST

¢ For machine learning-based methods, we use objects

. . 0.030 ;
with secure redshift measurements from — 0.0160 + 0.2043 x N-94
spectroscopy to train algorithms 0.028 \\ ;
e For template-based methods, they are used to refine 0.0264 \
models of galaxy spectral energy distributions A 0.024 ] \\
e A baseline spectroscopic training set for Rubin LSST % 0.025 \\\
would consist of deep spectroscopy of >20,000 objects ' N\
N
over a broad sky area with spectra spanning the full 0.020 - N
optical window 0.018. \\\\
e Support for such activities was recommended in the | | | \\.
Snowmass Cosmic Frontier report 10° 10° 10° 10°

training sample size
e See the Snowmass CF4 and CF6 reports and the white

paper Enabling Flagship Dark Energy Experiments to Newman et al. 2019
Reach their Full Potential (Blazek et al.)
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The DESI instrument could be an efficient option for obtaining this data

* |n test spectroscopy with DESI, we obtained __1h15m to 3h45m
a redshift measurement success rate in 1.5
hours median exposure time to similar to i _’_‘_\ﬁ, —
what is achieved in 1 hour with DEIMOS at -% 0.6l - =
the Keck Observatory (Dey et al. 2023, in e —
prep.; see his talk in the session tomorrow!) A 04l =3 'ﬁ[_
O
e Implies that DESI could complete a baseline S ool DESI
photo-z training survey to LSST Year 1 depth 5 DEEP-2/3
in 20-30 dark nights 0.0} ~~—- ZCOSMOS-Bright ™ B
22.0 22.5 23.0 235 24.0 245
e 200-300 nights to full Year 10 depth I-mag

Dey et al. 2023, in prep.



A Stage V Spectroscopic Facility would be ideal for obtaining full-depth LSST
training sets

e "Spec-S5": a high priority from the Snowmass Cosmic
Frontier report

e Example concepts: MegaMapper, the Maunakea
Spectroscopic Explorer, ESO Wide-field Spectroscopic
Telescope (WST)

* 6.5-12m telescope, 1.5-7.5 sq. deg. field of view,
20k-50k fiber positioners

e Would be able to explore dark matter, dark energy,
cosmic inflation, and Milky Way structure, all
simultaneously

e Rubin LSST data would play a key role in target selection

e Scaling from DESI, could obtain baseline LSST photo-z
training sample to full survey depth in 20-60 nights!




Conclusions

e Rubin Observatory LSST will provide a dataset
of unprecedented constraining power...

e but extracting full value from that data will
require both improved methods and better
spectroscopic training sets

e A DESI-2 program and Spec-S5 could play key
roles in enabling these improvements

e For lots more details, see our ARAA article!
e Journal version: https://

www.annualreviews.org/doi/abs/10.1146/
annurev-astro-032122-014611

e ArXiv version (with some formatting
advantages): https://arxiv.org/abs/2206.13633
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Real-world datasets fall short of this ideal in many ways:

e Spectroscopic samples of faint e When spectroscopy is obtained over
galaxies tend to be small: sparsely small areas of sky, density
sample the underlying distribution fluctuations in the universe cause
some redshifts to be over- or under-
sampled
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Real-world datasets fall short of this ideal in many ways:

e Some populations of galaxies are e 0.5-5 percent of the time (depending
difficult to measure redshifts for, and on sample), spectroscopic redshift
end up missing from the estimates are badly incorrect

spectroscopic samples e Leads to mis-training or inaccurate

¢ Fail 10-40% of the time characterization

Systematic Incompleteness

Incqrrect Redshifts
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Better methods, and better datasets, will be needed to make optimal use of Rubin

Observatory data

e An example of challenges we are working
on: how to get well-calibrated probability
distributions for the redshift of an
object?

e Result: the Cal-PIT algorithm (Dey, JN et
al. 2021; Dey, Zhao, JN et al. 2022)

e Basic idea: recalibrate PDFs so that the
fraction of times the true value falls
within the limits y; and y, = the integral
of the PDF between these limits (PIT)

e Recalibrates via regression as a

function of position in parameter
space: local, not global, correction

e Such methods can be useful for ML-
based inference across many fields
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e After recalibration, P-P plot approaches
diagonal (ideal) and PIT distribution
becomes flat (as for a true PDF)
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Some of the ways that real-world spectroscopic datasets fall short of the ideal: 1)

sparse sampling

e |deal case: we obtain redshifts for objects
densely and evenly sampling the distribution
of galaxies in SED space

e Here, a toy model: e.g., what you would get
dimensionality-reducing SED space to 2D

e Can easily determine redshift at any point
from redshifts of objects in the local
neighborhood

e Real world: if we want spectroscopy of faint
galaxies, sample sizes will be small and will
only sparsely cover SED space

e The objects with spectroscopy in the same
neighborhood may not be all that close...
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Some of the ways that real-world spectroscopic datasets fall short of the ideal: 2)

sample / cosmic variance

e |deal case: the redshifts in your spectroscopic
training set have a redshift distribution
matching the overall average across the sky

e Real world: Deep training sets are obtained
over only small areas of sky

e The selected regions will be overdense or
underdense at some redshifts due to large-
scale structure

e This can easily imprint on redshift
distributions across the sky with ML methods
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Some of the ways that real-world spectroscopic datasets fall short of the ideal: 3)

systematic incompleteness

e |deal case: every galaxy you target for
spectroscopy provides a secure measurement
of its redshift

e Real world: When we target faint samples, we
fail to measure the redshift ~30% or more of
the time

e The objects we do get redshifts for are
systematically different in properties
(including redshift) than the things we
succeed for
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Some of the ways that real-world spectroscopic datasets fall short of the ideal: 4)

incorrect redshifts

e |deal case: every time you measure the
redshift spectroscopically you get the
correct z

e Real world: Depending upon the sample,
0.5%-10% of redshift measurements will be
incorrect

e E.g.: misidentified a single emission line, or
mistook sky subtraction residuals for lines

e Need robust ML methods for photometric
redshifts
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Some of the ways that real-world spectroscopic datasets fall short of the ideal: 5)

color selections

e |deal case: you can just use redshifts from
pre-existing spectroscopic surveys and don't
need to obtain any new measurements

e Real world: Most large high-z surveys rely on
color cuts to target a limited redshift range of
interest

e Heterogeneous coverage of color space is a
major problem in photo-z training and
calibration

Figure:
Newman et al.
2013
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Some of the ways that real-world spectroscopic datasets fall short of the ideal: 6)

difficulties training at very low z

e |deal case: Training samples provide good
coverage across all possible redshifts

e Real world: The universe has little volume at
low redshifts so low-z galaxies are rare in
magnitude-limited samples

e Since they are poorly represented in training
sets photo-z algorithms tend to disfavor low z
solutions
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Do template-based photo-z's solve these problems by being less dependent on
training sets?

e Nop
0 e"' Finkelstein Fontana Salvato wiklind

e Kodra et al. 2022 tested many
template-based methods applied to -
CANDELS data

e Methods that all agree well with
spec-z's where we have them predict
very different redshift distributions 1
vs. magnitude, from the same data :
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If we restrict to the most-secure redshifts, much more of color space is untrained by
current samples

e Grey regions: cells in self-organized maps of galaxy color space that
are not constrained by spectroscopic redshifts
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