Satellite Optical Brightness

Forrest Fankhauser

with thanks to co-authors Tony Tyson and Jake Askari

and support from Vera C. Rubin Observatory National Science Foundation

A New Method for Satellite Brightness Calculation

Brightness Mechanisms

Both sunlight and earthshine are scattered by the satellite onto the night side of Earth's surface

Satellite Centered Frame

- Reduces dependent variables
- Brightness distributions become functions only of satellite height and satellite angle past the terminator [α]
- Intuitive reference frame

Bidirectional Reflectance Distribution Functions

- BRDF measures the scatter properties of a surface
 - Diffuse (paper)
 - Specular (mirror-like)
- Function of three vectors
 - Vector to light source
 - Vector to observer
 - Normal vector of surface
- We can fit empirical BRDFs to measured data
 - Laboratory measurements of material samples
 - Inferred from photometry of on-orbit satellites

Measured data and BRDF fits Starlink V1.5 Satellite surfaces

Starlink V1.5 Brightness Model

Primary Surfaces

Solar Array

- Normal vector points towards sun
- Surface Area: 22.7 m²

Chassis Deck

- Normal vector points to geodetic nadir
- Surface Area: 3.6 m²

Starlink V1.5 Brightness on Night Sky Diffuse Sphere Model

1 Satellites in the western sky pass into Earth's shadow

The diffuse sphere model is overly simplistic.

2 Satellite brightness is a function of range and the illuminated fraction of the sphere.

- Plots show how bright a satellite would appear at a given point in the sky
- Sun azimuth = 90° (East)
- This corresponds to sunrise for an observer at the Equator

Starlink V1.5 Brightness on Night Sky Our Model: Lab Measured BRDFs

Brightness in the eastern sky is driven by forward scatter from the chassis nadir

- 4
- Brightness in the western sky is driven by backscatter from the solar array

Starlink V1.5 Brightness on Night Sky Our Model: BRDFs fit to satellite observations

Back scatter from the solar array is also captured quite well

Model Validation & Comparison

- Our Model (Lab BRDFs)
 - Systematically underpredicts brightness since not all components are modeled
 - Good correlation
 - Doesn't require any onorbit data
- Our Model (Best-Fit BRDFs)
 - Good correlation and low bias
- Diffuse Sphere Model
 - Bad correlation
 - Not physically based

Applications

Satellite Design Trades

Used by SpaceX to inform brightness mitigation for V2 & V2 Mini Satellites

Doesn't require on-orbit observations!

- Specular materials on chassis nadir
- Development of dark paints
- Off-pointing of solar arrays

Gen 1 Chassis Sticker*

Gen 2 Chassis Sticker* Less diffuse scatter!

*api.starlink.com/public-files/BrightnessMitigationBestPracticesSatelliteOperators.pdf

Predicting Satellite Passes

Pass of Starlink-3831

Location: *Tucson, AZ, USA* Time: *10:34 PM on August 10, 2023*

E

Peak Brightness: Magnitude: 5.3 Altitude: 43° Azimuth: 86 ° (East)

Simulating Streaks on the LSST Detector

- *Toy* constellation model of 30,000 satellites
- Toy brightness model meant to represent Starlink V2 (full size)
- 7 streaks visible over a period of 60 seconds
- Brightness of streak can vary by 2x across an image

LSST Lifetime Simulations

LSST Observing Schedule

See poster for more information:

Effects of LEOSat streaks on LSST data (2023) by Phan Kandula, Forrest Fankhauser, J. Anthony Tyson

For more information, please see:

Satellite Optical Brightness

Citation: Forrest Fankhauser *et al* 2023 *AJ* **166** 59 DOI: <u>https://doi.org/10.3847/1538-3881/ace047</u>