Search for anomalous objects in the ALLWISE survey

Agnieszka Pollo

National Centre for Nuclear Research (Warsaw) & Jagiellonian University (Cracow); Poland with Aleksandra (Ola) Solarz; Maciek Bilicki, Mariusz Gromadzki, M., Anna Durkalec, Michal Wypych

Tucson, 7.08.2023

Based on the paper: "Automated novelty detection in the WISE survey with one-class support vector machines", Solarz et al. 2017 Astronomy & Astrophysics, Volume 606, id.A39

Wide-field Infrared Survey Explorer (WISE)

Solarz et al. 2017

- All-Sky survey in IR
- Detected over 747 mln sources

(15 PB of data; tables + images)

- Publicly available (position, photometry in 4 bands (3.6-22 um))
- Low angular resolution (~6")
- No redshift information

(http://wise2.ipac.caltech.edu/docs/release/allsky/)

Exploration of parameter spaces

→ The usual first approach to selection: CC diagrams

→ Novel or anomalous sources deviate from expectations but could mimic a behaviour of a 'normal' object

→ need for new ML approaches based on larger parameter spaces

Credit: Wright+10

WISE: first step towards ML novel source detection

Training set:

 \rightarrow AllWISE x SDSS (α , δ) with secure spectro-z

Solarz et al. 2017

WISE: first step towards ML novel source detection

Solarz et al. 2017

Parameter space: → Brightness W1 → Color W1-W2 → Compactness W1mag13 = w1mpro(5") - w1mpro(11")

WISE: accounting for unknown Solarz et al. 2017 Unknowns

Novelty detection with One-Class Support Vector Machines

- Create one 'known' class (mix of AllWISE x SDSS galaxies, stars, QSOs)
- Maps input data to a higher D parameter space (based on Kernel methods)
- Hypersurface hugging the expected sources
- Anything with 'unknown' patterns falls outside the hypersurface => novelties

~650,000 anomalous sources

Solarz et al. 2017

What are they?

Spurious sources

- W1-W2 ~ -1 ; 80%; Spitzer GLIMPSE: IRAC I1 [3.6 um], IRAC I2 [4.5 um]
- Low WISE resolution (6") in crowded fields => blends
- OCSVM: good tool for selecting hidden artefacts

Solarz et al. 2017

AGN candidates?

- 30,000 sources (those in Galactic Plane: still mostly blends)
- 76% undetected at other wavelengths!
- ~7 000 objects with SDSS photometry (no spectro-z), follow-up observations
 - Peculiar (dusty) QSOs
 - Low-z very dusty galaxies
 - Very dusty Galactic objects like YSO

Conclusions

- With sufficiently big data (like LSST) anomalies may come in big numbers
- Parameter space is important
- What we find is mostly trash but
 - valuable trash if not found by other methods \rightarrow novelty search as a method for additional cleaning of catalogs
 - some genuine atypical sources
 - nedeed methods of separation (clustering in different parameter spaces/with DL)