Testing the Sensitivity Matrix of the LSST

Simulating Donuts with imSim

Rubin PCW 08/08/23

TABLE OF CONTENTS

Donuts and why they matter, the degrees of freedom

How I use imSim to simulate these images

LOOKING FORWARD

03

The ultimate goal and benefit of these images

01 BACKGROUND

Determining Perturbations with Donuts

When the focal plane is taken slightly out of focus in either direction, formerly point-like sources become 'donut' shapes

- Donuts help us easily visualize and determine error in the alignment of the camera and mirror
- Zernike polynomials are more easily identifiable
- The Wavefront Sensors serve the purpose of providing an intra- and extrafocal image when the telescope is focused

Wavefront Sensor 192

Wavefront Sensor 191

Science Sensor 94 (in focus)

Example:

6000 micron perturbation applied to the M2 mirror (dx)

Hexapod Degrees of Freedom

Figure 2: LSST M2 Hexapod and Camera Hexapod/Rotator Assembly

Sneed et al. 2016

Camera Hexapod/Rotator Assembly Hexapod degrees of freedom:
0: M2 dz (microns)
1, 2: M2 dx, dy (microns)
3, 4: M2 rx, ry (arcsec)
5: Camera dz (microns)
6, 7: Camera dx, dy (microns)
8, 9: Camera rx, ry (arcsec)

Out of the 50 degrees of freedom, 10-49 are bending modes of the M1M3 mirror and the M2 mirror

Credit: Seth Digel

Science vs. Wavefront Sensors

The layout of the LSST camera

The Loop

The 'loop' refers to a few different things:

- Open loop: Using a lookup table to correct for perturbations, does not require donuts
- Closed loop: Correcting for error by using the donuts of the wavefront sensors to determine the perturbations
- Nested loop: The testing of the sensitivity matrix during early active optics commissioning, what I am simulating images for right now

The Sensitivity Matrix

There are 10 degrees of freedom for the hexapods, 6 filters, 3 focuses (intra- extra- and in-focus), 5 or 7 variations per degree of freedom, so about 1260 images (some cancel out)

The various combinations of all of these variables are how the sensitivity matrix is calculated, so I am simulating all of these images in preparation for the active optics commissioning on the telescope.

02 IMSIM

•

imSim and YAML

- imSim is now primarily written in YAML, pulling off the GalSim config dictionary
- Simulates images from LSST as-designed

	166	175	184	
121	130	139	148	157
076	085	094	103	112
031	049	049	058	067
	004	013	022	

```
modules: [imsim]
template: generating_perturbations
  template: generating_perturbations:eval_variables
  fmid: 60514.98
  artp: 0.0 deg
 output.type: LSST_CCD
output.det_num: [94, 191, 192]
output.dir: /sdf/group/rubin/user/rp312
  dir: /sdf/group/rubin/user/rp312/perturbations/dress_rehearsal
  file_name: centroid_fiducial_1_focus_det112.txt
    object_id: "@object_id"
```

 \Box ο ð D

```
modules: [imsim]
template: generating_perturbations
  template: generating_perturbations:eval_variables
  artp: 0.0 deg
input.telescope.fea.aos_dof:
 output.type: LSST_CCD
output.det_num: [94, 191, 192]
output.dir: /sdf/group/rubin/user/rp312
  dir: /sdf/group/rubin/user/rp312/perturbations/dress_rehearsal
  file_name: centroid_fiducial_1_focus_det112.txt
    ra: "$sky_pos.ra.deg"
```

Ο

03 LOOKING FORWARD

Where Are We?

Confirming the Data

Is the Wavefront Estimation Pipeline able to figure out on its own what perturbations I applied to these images?

The Steps Ahead

Data Confirmed

WFE determines that the data makes sense

Move on to Batch Jobs

These images are computing intensive, move on to whole focal plane

03

Simulate More of the Loop

Wider variety of combinations of degrees of freedom, filters

02

Ingest into a Butler

04

To be used during early active optics commissioning

Thank you!

Credit: Slidesgo