VERA C. RUBIN OBSERVATORY

DUNLAP INSTITUTE for **ASTRONOMY** & **ASTROPHYSICS**

Photometric redshifts and supernova cosmology

Renée Hložek

Department of Astronomy and Astrophysics & Dunlap Institute **University of Toronto**

@reneehlozek

CHARLES AND USA SIMONYI FUND

In general we need to model

In general we need to model/control for contamination (uncertain type)

and redshift uncertainty

Ruhlmann-Kleider, Lidman Möller 2022

What does a preliminary analysis with photo-z yield? (Mitra++ 2023)

Simulated Type Ia only sample from Rubin LSST DDF (PLAsTiCC simulations)

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

What does a preliminary analysis with photo-z yield? (Mitra++ 2023)

Simulated Type Ia only sample from Rubin LSST DDF (PLAsTiCC simulations)

Photo-z treatment following Graham et al. 2018

Mitra++ 2023

Incorporating photo-z "as usual" in standard analysis

No type contamination from non-la objects \rightarrow significantly more objects with only photo-z at z> 0.8

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS Mitra++ 2023

Take home message: using all the supernovae gives 1.5x the FoM

While still controlling for various systematic errors (including extinction, calibration and wavelength offsets)

Bias in mu from redshift error mostly self-corrects since z_{phot} and SALT2 color are anticorrelated \rightarrow larger (smaller) z_{phot} results in bluer (redder) color.

This will be harder to do given type/classification uncertainty.

Astronomy & Astrophysics

Still considering a multi-stage approach \rightarrow can we fit for things simultaneously and forward model uncertainties?

What is the way forward?

- Template generation early is going to be critical for supernova cosmology → light curve fitting will be more important to early cosmology with supernova before photo-z become the bottle neck
- Most supernova hosts will have spec-z from telescopes like 4MOST, DESI will cover z < 0.5-0.6; for higher redshifts, spec-z from other telescopes will supplement individual objects (see e.g., Mandelbaum++2019, Newmann++ 2019, Hlozek++ 2019)

Facility	Supernova single-object follow-up requirements
4 m spectroscopy	60–180 nights total
8 m spectroscopy	180-540 nights total
> 20m spectroscopy	180-540 nights total
Facility	Strong Lensing single-object follow-up requirements
2–4 m non-AO imaging	< 8000 hours total
> 8m AO imaging	~ 30 hours, split amongst 8 m+ and 30 m+ telescopes
> 8m spectroscopy	~ 100 hours, split amongst 8 m+ and 30 m+ telescopes

- Two analysis modes can exist: including separately-generated p(z) into cosmology likelihood and multi-fit for photo-z and lc/cosmology in hierarchical model
- Lots of exciting work to develop our photometric cosmology