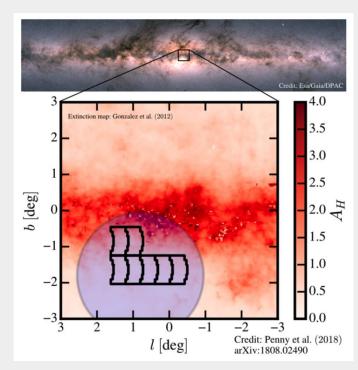

Assessing the combination of Vera Rubin and Nancy Roman observatories for enhanced characterization of microlensing planetary events

Work partially supported by **Kickstarter project**: Getting started on Transients and Variable Stars for Rubin's LSST in Argentina

Anibal Varela, for the TVS Microlensing sub-group

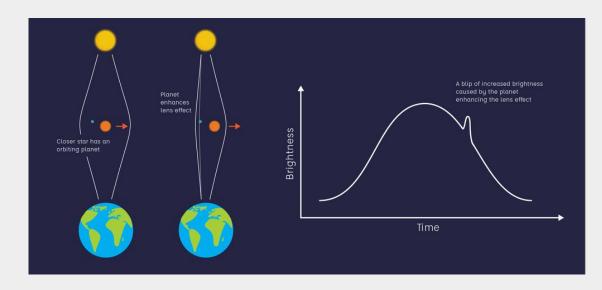

Motivation

The Roman mission will carry out an exoplanet survey

- Galactic Bulge Time Domain Survey, covering ~2 sq-deg
- Expects to detect thousands of exoplanets through microlensing
- High cadence (imaging every ~15 min) ~ 2 month seasons, but with large gaps
- Will be launched in 2027

Rubin data will also be important for microlensing

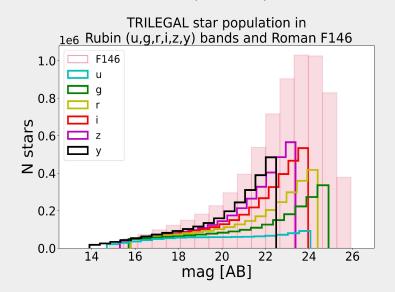
- TVS microlensing subgroup (see report by Somayeh Khakpash)
- The Rubin footprint includes the Roman fields
- Starts science operations in 2024, for ten years
- Improve the detection and characterization of microlensing events:
 - Provide precursor data for Roman, longer time scale for baseline
 - Able to fill-in some gaps of the Roman data
 - Enable microlensing parallax to be measured for some events


Maximizing science return by coordinating the survey strategies of Roman with Rubin, and other major facilities [arXiv: 2306.13792]

Microlensing

A microlensing event occurs when two unrelated objects as two stars line up along the observer line of sight

We study events with binary lens. This model depends on 8 parameters:

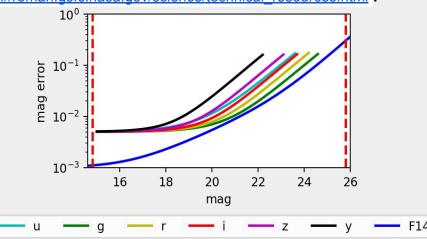

- the time of maximum magnification t_0
- the time scale t_E
- the mass ratio q of the lenses and their separation S
- the angle α and the parallax vector whose components are $\pi_{EN} \, \pi_{EE}$

Simulation of microlensing light curves

Simulation of sources with TRILEGAL

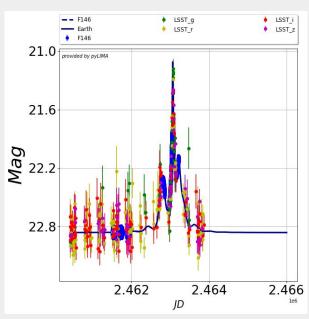
(Leo Girardi)

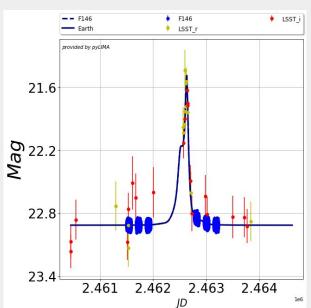
Cadence

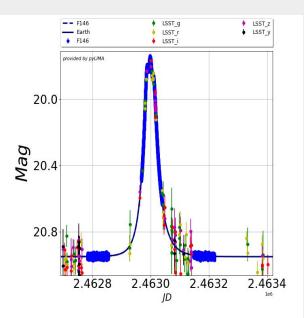


Cadence and noise model

Rubin: obtained from simulation OpSim *baselinev2.0* with the models for magnitude errors.

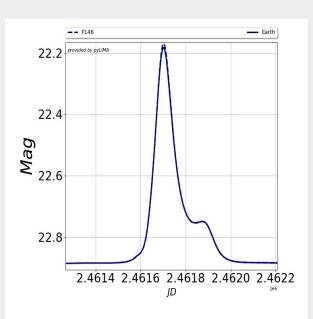

Roman: noise model from Peny et al (2015) using pyLIMA software (Bachelet et al 2017). Roman technical resources

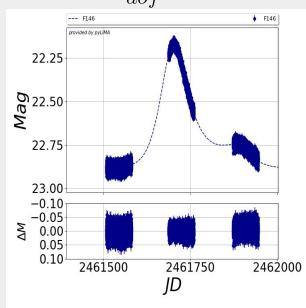

https://roman.gsfc.nasa.gov/science/technical_resources.html .



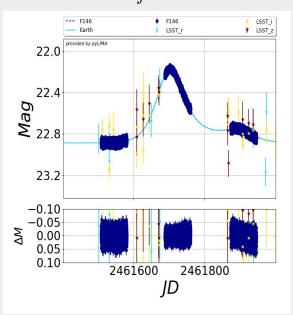
Example of events simulated using pyLIMA (E. Bachelet)

Selected events

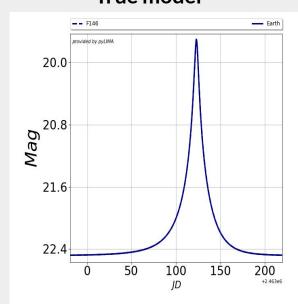



Some examples of fitting using TRF algorithm with PyLIMA

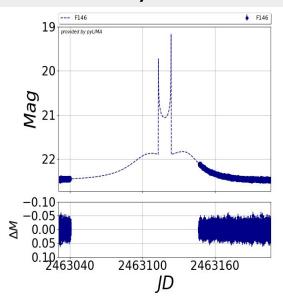
True model


Fit with only Roman data

$$\frac{\chi^2}{dof}$$
 =1.0

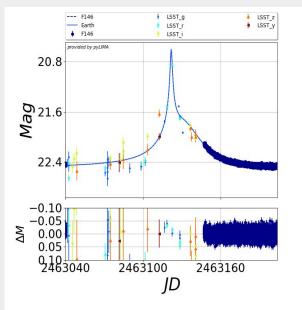

fit with Roman + Rubin

$$\frac{\chi^2}{dof}$$
 =1.1



Some examples of fitting using TRF algorithm with PyLIMA

True model

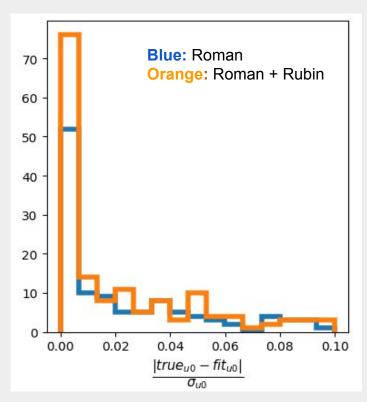


Fit with only Roman data

$$\frac{\chi^2}{dof}$$
 =1.0

fit with Roman + Rubin

$$\frac{\chi^2}{dof}$$
 =1.0


Evaluating metrics to assess the impact of Rubin data

- Goodness of the microlensing LC fit
- Fractional error of recovered values x input values
- Fraction of events well fitted (or with well recovered parameters)
- Bias with respect to inputs and with uncertainties
- Relative value of recovered uncertainties
- Fraction of events with uncertainties or bias below a given threshold

Comparing values for all the 8 LC parameters.

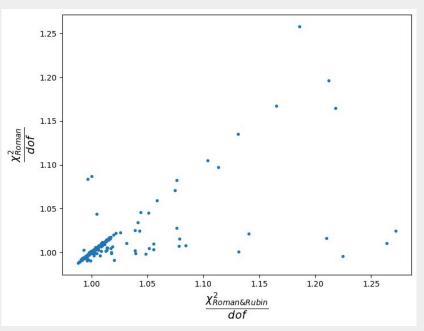
Next:

- Understand/fix cases where pyLIMA seems to fail
- Nail down classes of events where Rubin has a larger impact
- Focus on interesting parameters (e.g. parallax)

Histogram of bias relative to the statistical uncertainty for the impact parameter from the pyLIMA fits.

Final remarks

- This work is in progress.
- Simulation pipeline is ready (and can be applied to any OpSim).
- Exploring metrics to estimate the improvements of the combination of Rubin + Roman data.
- Will focus on specific subsets of events.
- The fitter algorithms are a relevant issue, there are unexpected behaviors for a fraction of the events that need to be further explored.
- When this part it's ready we can study how the different strategies of observation of Rubin (and Roman) can impact the characterization of the microlensing events.


Thank you!

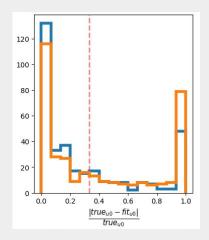
Strategies to evaluate the results

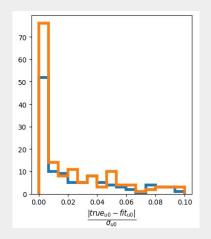
We use several metrics to evaluate the enhancement of this characterization in the set of events, some of them are

$$\chi^2 = \sum_{i}^{N} \left(\frac{y_i - f_i}{\sigma_i} \right)^2$$

This estimator is useful to know if the data is compatible with the model fitted but give no information about how the parameters found far from the true model.

Strategies to evaluate the results


We use several metrics to evaluate the enhancement of this characterization in the set of events, some of them are


$$\frac{|true-fit|}{true}$$

This metric it's essentially the bias or the distance between the true parameter and the one obtained with the fit.

$$\frac{|true-fit|}{\sigma}$$

This metric it's also the bias compared with the error of the fitted parameter.

We are exploring other metrics too

$$\frac{\sigma_{Roman} - \sigma_{RR}}{fit_{Roman}}$$

$$\frac{\sigma}{true}$$