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Image courtesy: Sloan Digital Sky Survey

Time since Big Bang

Knowing redshifts of objects is the first step for all extragalactic 
studies but measuring it directly is incredibly resource intensive

Redshift is a proxy for galaxy distances

Expanding Universe



Photometric Redshifts (photo-z)
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Why Predict Entire Distribution           ?

Adapted from Malz & Hogg, 2020 

Galaxies with very 
different imaging 

data can have 
similar redshifts

Galaxies with 
similar imaging 
data can have very 
different redshifts

Imaging data has 
incomplete and 
noisy information 
about redshift

Nonlinear projection of imaging data (x)
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https://arxiv.org/abs/2007.12178


Calibrated Predictive Distributions

Expected CDF
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Fraction of times the true value falls within the limits y1 and y2

=
The integral of the PDF between these limits (PIT)

for any arbitrary subset of the test data
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Current Methods only Achieve Global Calibration

Many methods achieve marginal coverage but so does an uninformative 
prediction like the marginal distribution of the training set.

e.g., The uninformative TrainZ distribution 
from Schmidt, Malz et al. 2020. 
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Expected CDF
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Evaluate PIT Distribution for 
the test set as a whole

https://academic.oup.com/mnras/article/499/2/1587/5905416


Global Calibration can be achieved while being 
always wrong!
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Local Calibration 
is what we want!



Requirements for Astronomy Experiments 

Image courtesy: Vera Rubin Observatory

Moments of the photometric redshift 
predictive distributions should be within 0.2% 

of the truth to meet LSST goals
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Estimating Local (Conditional) PIT
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Estimating Local (Conditional) PIT
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Calibration using Local PIT (Cal-PIT)
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Photometric Redshift Predictive Distributions

Post re-calibration, performance is better on metrics of conditional coverage

We start with the marginal distribution  f(y) as our initial guess
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Photometric Redshift Predictive Distributions

Bimodality can be recovered even if the initial guess was unimodal
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Summary 

• Predictive distributions are more useful for physical sciences than 
point estimates and intervals.

• We can produce predictive distributions with correct conditional 
coverage with calibration using local PIT (Cal-PIT).

• The method is general purpose and non-parametric.

Thanks for your attention! 
Have questions, comments or want to collaborate? 
Contact: biprateep@pitt.edu 

Ref: Dey, Zhao et al. 2022 (arXiv:2205.14568)
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