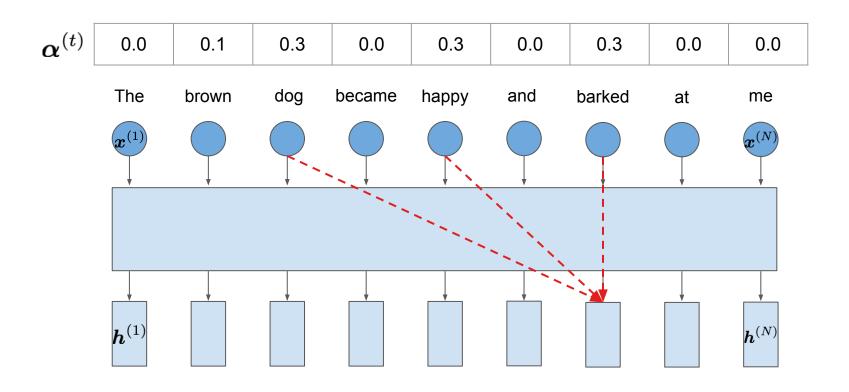


The Arrival of the Transformers for **Advanced Analysis of Alert Streams**

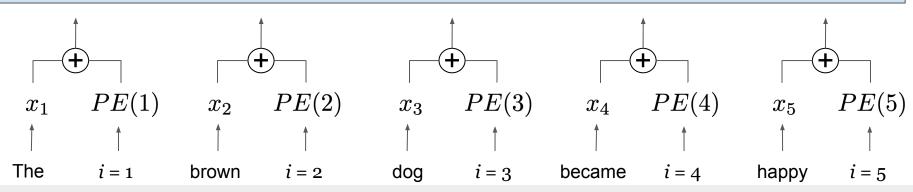
Guillermo Cabrera-Vives

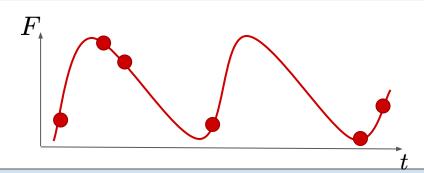
Universidad de Concepción Millenium Institute of Astrophysics Millennium Nucleus on Young Exoplanets and their Moons

F. Förster; G. Cabrera-Vives; E. Castillo-Navarrete; P. A. Estévez; P. Sánchez-Sáez; J. Arredondo; F. E. Bauer; A. Bayo; R. Carrasco-Davis; M. Catelan; F. Elorrieta; S. Eyheramendy; P. Huijse; G. Pignata; E. Reyes; J. Reyes; D. Rodríguez-Mancini; D. Ruz-Mieres; C. Valenzuela; J. Álvarez-Maldonado; N. Astorga; J. Borissova; A. Clocchiatti; D. De Cicco; C. Donoso-Oliva; M. J. Graham; L. Hernández-García; R. Kurtev; A. Mahabal; J.C. Maureira; R. Molina-Ferreiro; A. Moya; A. Muñoz Arancibia; W. Palma; M. Pérez-Carrasco; A. Papageorgiou; P. Protopapas; M. Romero; L. Sabatini-Gacitua; A. Sánchez; J. San Martín; C. Sepúlveda-Cobo; E. Vera; J. R. Vergara

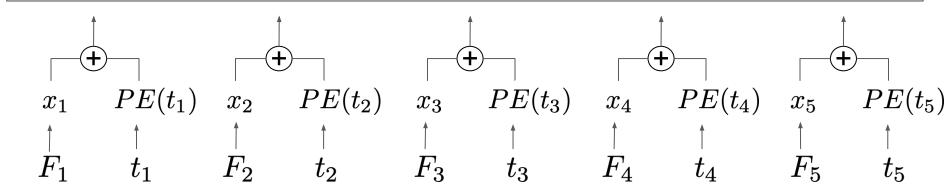


What is a transformer?


Self-attention

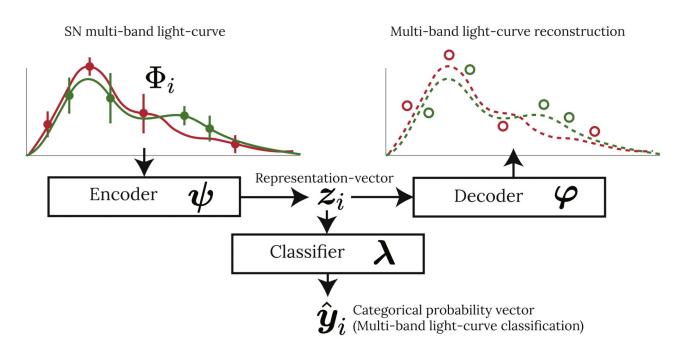

Transformers in NLP

"The brown dog became happy and barked at me"


Multi-Head Self-Attention Blocks

Transformers for Light Curves

Multi-Head Self-Attention Blocks



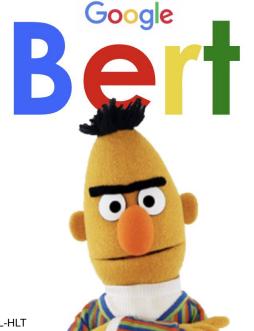
Transformers for SNe Classification

Multiband Supernova Classification

Pimentel O., et.al., Deep Attention-based Supernovae Classification of Multiband Light Curves, AJ, 2023

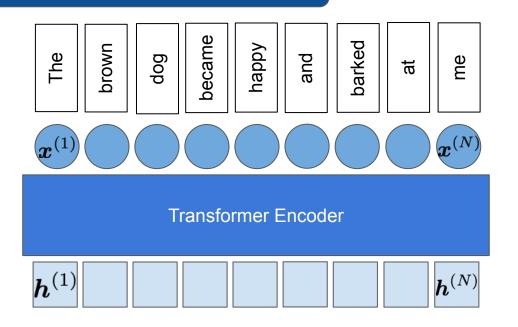
Multiband Supernova Classification

Pimentel O., et.al., Deep Attention-based Supernovae Classification of Multiband Light Curves, AJ, 2023

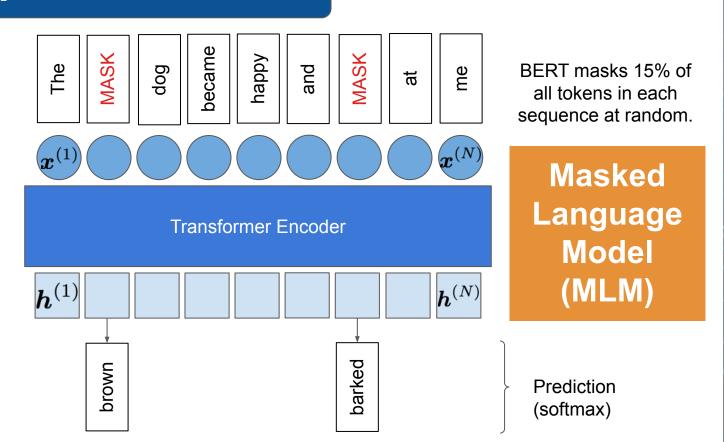


Foundation models

Foundation Models


Foundation models (e.g., BERT, GPT-3, CLIP, Codex) are models trained on broad data at scale such that they can be adapted to a wide range of downstream tasks.

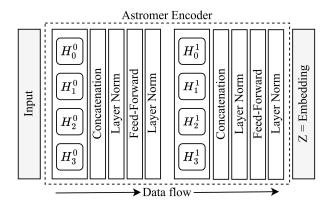
https://hai.stanford.edu/news/introducing-center-research-foundation-models-crfm

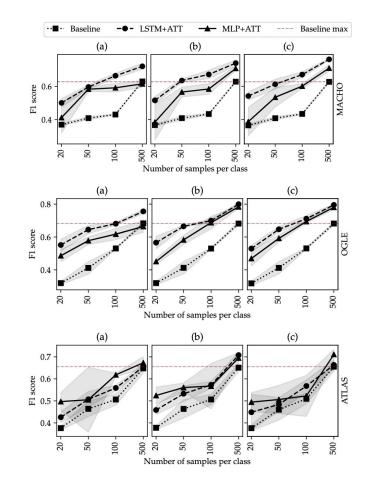


Devlin et.al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019, NAACL-HLT

BERT

BERT

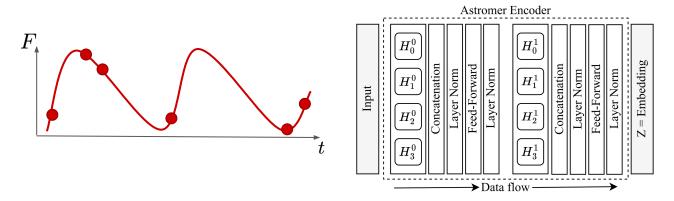



ASTROMER

Pretraining

MACHO unlabeled;

Alcock et.al., 2000 1,529,386 R-band light curves

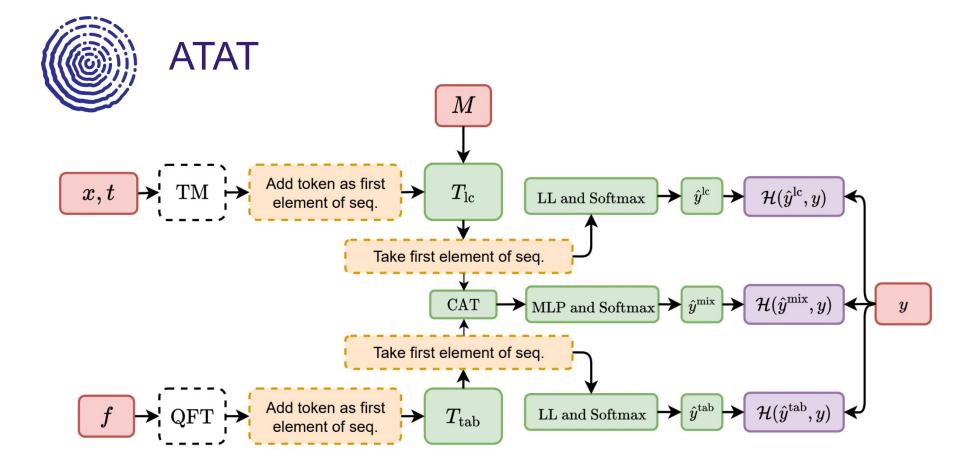


Donoso-Oliva et.al., ASTROMER: A transformer-based embedding for the representation of light curves, 2023, A&A

Positional Encodings for Light Curve Transformers

- We test different PEs for light curve transformers
- We evaluate their performances in terms of:
 - reconstruction of astronomical time series
 - classification of variable stars

D. Moreno-Cartagena et.al., Positional Encodings for Light Curve Transformers: Playing with Positions and Attention, ICML ML4Astro 2023


Positional Encodings for Light Curve Transformers

	MAG	CHO UNLAB.		MACH	OGLE	ATLAS		
PE TYPE			FULL	3/4	1/2	1/4		
I	RMSE	TIME (EPOCHS)	F1 (%)	F1 (%)	F1 (%)	F1 (%)	F1 (%)	F1 (%)
BASELINE	.170	6D 14H (523)	71.6 ± 1.9	69.2 ± 1.9	66.2 ± 1.9	63.3 ± 1.5	71.3 ± 1.1	65.8 ± 1.4
TRAINABLE	.169	2р 13н (202)	72.9 ± 2.1	72.3 ± 1.0	71.0 ± 1.0	69.0 ± 0.5	74.9 ± 1.4	65.4 ± 1.8
FOURIER	.170	1D 20H (142)	73.0 ± 1.1	70.2 ± 1.9	67.8 ± 0.9	62.9 ± 2.0	72.0 ± 0.8	69.6 ± 0.1
RECURRENT	.197	0р 16н (048)	67.1 ± 1.8	63.5 ± 2.5	59.7 ± 1.9	54.6 ± 1.3	70.7 ± 1.1	68.3 ± 0.9
TUPE-A	.219	0D 17H (084)	67.3 ± 1.6	66.1 ± 1.4	64.9 ± 1.0	60.8 ± 0.9	71.0 ± 1.0	67.5 ± 0.9
CONCAT	.170	3D 01H (237)	$\textbf{73.4} \pm \textbf{1.1}$	$\textbf{73.1} \pm \textbf{1.7}$	70.9 ± 1.7	$\textbf{69.0} \pm \textbf{1.8}$	74.5 ± 1.3	68.1 ± 0.6
PEA	.199	OD 17H (058)	69.7 ± 0.9	68.9 ± 1.8	68.0 ± 1.0	65.5 ± 2.5	$\textbf{76.3} \pm \textbf{1.2}$	66.9 ± 1.0

- Trainable PEs (added or concatenated) suffer less degradation with sparser light curves creating a better representation of temporal information
- PEA outperforms other models for OGLE, while Fourier achieves the best performance over ATLAS

Astronomical Transformer for time series And Tabular data

Astorga et.al., ATAT: Astronomical Transformer for time series And Tabular data, DOI: 10.21203/rs.3.rs-2395110/v1

1										la constant									17 7 7 17		
-	CART	0.41	0.18	0.03	0.00	0.13	0.01	0.04	0.00	0.02	0.12	0.06	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	lax	0.03	0.67	0.01	0.06	0.12	0.00	0.05	0.00	0.01	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	91bg	0.01	0.01	0.92	0.01	0.03	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	la-	0.00	0.03	0.00	0.82	0.08	0.03	0.02	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	lb/c	0.01	0.05	0.01	0.11	0.67	0.03	0.09	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	II:	0.01	0.02	0.00	0.04	0.07	0.52	0.29	0.02	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	SN-like/Other	0.00	0.03	0.01	0.04	0.12	0.04	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	SLSN	0.00	0.00	0.00	0.00	0.01	0.05	0.00	0.92	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	PISN	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Del	TDE	0.01	0.02	0.01	0.00	0.01	0.02	0.00	0.00	0.01	0.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
rue la	ILOT	0.03	0.03	0.01	0.00	0.03	0.00	0.00	0.00	0.00	0.06	0.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	KN-	0.04	0.06	0.02	0.00	0.09	0.00	0.01	0.00	0.00	0.05	0.02	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	M-dwarf Flare	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.69	0.08	0.09	0.00	0.02	0.01	0.01	0.10
	uLens-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.95	0.03	0.00	0.00	0.00	0.00	0.03
	Dwarf Novae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.07	0.87	0.00	0.01	0.02	0.01	0.03
					0.00																
	Delta Scuti																				
	RR Lyrae																				
	Cepheid																				i
					0.00																
	Lb		× <u>a</u>		<u>a</u>	p/c	=				TDE		3				AGN				B
		CART	<u></u>	91bg		<u>a</u>		e/Oth	SLSN	PISN	Ħ	ILOT	~	rf Fla	uLens	Nov	A	Delta Scuti	RR Lyrae	Cepheid	
								SN-like/Other						M-dwarf Flare		Dwarf Novae		Del	~	J	
								07		Dr	odicte	ad lah	lo.	_							

Takeaways

- Transformers are becoming the state-of-the-art in many fields, including the analysis of alert streams.
- Foundation models for light curves are becoming a reality.
- The future: multi-modal, multi-stream, multi-task generalist models for astronomy?

The Arrival of the Transformers for **Advanced Analysis of Alert Streams**

Guillermo Cabrera-Vives

Universidad de Concepción Millenium Institute of Astrophysics Millennium Nucleus on Young Exoplanets and their Moons

guillecabrera@inf.udec.cl

