
4MOST – 4m Multi-Object Spectroscopic Telescope

4MOST: Spectroscopically complementing LSST

Franz Bauer

www.4MOST.eu

Instrument Characteristics

	Specification	Design value
	Field-of-View (hexagon)	~4.2 degree ² (Ø>2.6°)
	Multiplex fiber positioner	2436
LRS	Medium Resolution Spectrographs (2x) # Fibres Passband Velocity accuracy Spectral sampling (pixels/FWHM)	R~4000-7500 812 fibres (2x) 370-950 nm < 1 km/s > 2.8 pixels
HRS	High Resolution Spectrograph (1x) # Fibres Passband Velocity accuracy Spectral sampling (pixels/FWHM)	R~20,000 812 fibres 392.6–435.5 nm, 516–573 nm, 610–679 nm < 1 km/s > 2.56 pixels
	# of fibers in $\emptyset=2$ ' circle	>3
	Fibre diameter	Ø=1.42 arcsec

4MOST: Wide-field, high-multiplex optical spectroscopic survey facility for ESO

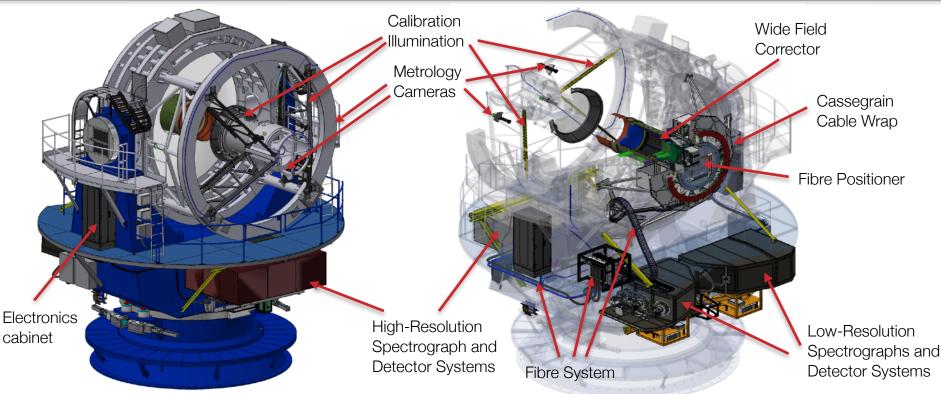
• Status:

- 4MOST is in final assembly & test phase in Europe before shipment
- First light on **VISTA** telescope **Q2-2024**
- Operations start **Q4-2024** (at least 2x 5-year Surveys)

• Science:

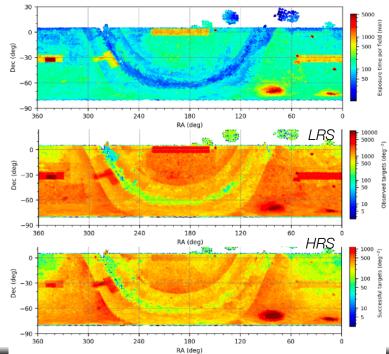
- Cosmology, galaxy evolution, high-energy, transients and Galactic science
- Complement large-area space missions: Gaia, eROSITA, Euclid, PLATO
- Complement ground-based surveys: SKA, Rubin, VST, VISTA, DES, etc.

• Survey facility:

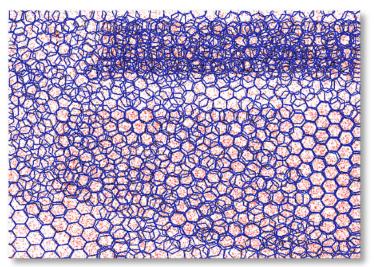

- Consortium delivers instrument, science operations, data products, science
- Run all-sky 5 year public surveys in parallel, with ~yearly data releases
- Key surveys organized by consortium in coordination with community
- Add-on surveys from community and Chile through ESO peer-reviewed applications


4MOST on VISTA

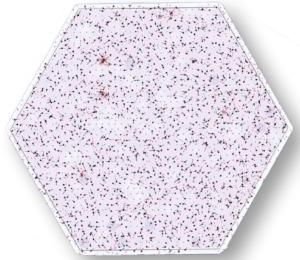
Facility under final test in Potsdam, Germany



4MOST Observing Strategy


- Unique operations model for MOS instruments => suitable *for most* science cases
- 4MOST program defined by *Consortium* (70%) and *Community* (30%) *Public Surveys* of 5 years
- All Surveys will run *in parallel,* sharing fibres per exposure for increased efficiency
- Key Surveys set observing strategy
 - Millions of targets all sky
 - Fill all fibres
- Add-on Surveys for smaller surveys
 - Small fraction fibres all sky or
 - dedicated areas
 - 10³ to 10⁶ targets
- Several passes of sky with exposures 2–30 mins
- Wedding-cake distribution for total time 30min to 60h
- Will observe 13M galaxies+AGN & ~13M stars with LRS, ~4M stars with HRS in first 5-year survey

4MOST observing strategy



 Target and fibre hour pressure and completeness requirements drive the tiling; individual source exposure times and varying observing conditions (dark/grey/bright) included in scheduler.

Tempel et al. (2020b)

Fibre-to-target assignment done probabilistically, using weights to homogenise requested completeness, using e.g. local target density and future exposure time available

Tempel et al. (2020a)

Galactic Archeology Gaia and PLATO

Cosmology Euclid/Rubin/SKA

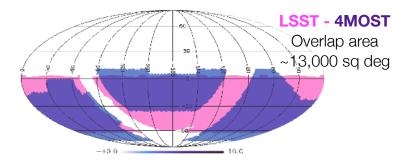
High-energy sk eROSITA

4MOST complementing LSST | PCW/Tucson, 8 August 2023 | Franz Bauer

Science Themes

Ten Consortium Surveys

No	Survey Name	Туре	Survey (Co-)Pl
S1	Milky Way Halo LR Survey	Gal	Worley (IoA), Starkenburg (RuG)
S2	Milky Way Halo HR Survey	Gal	Christlieb (ZAH)
S3	Milky Way Disk and Bulge LR Survey	Gal	Chiappini (AIP), Minchev (AIP)
S4	Milky Way Disk and Bulge HR Survey	Gal	Bensby (LU), Bergemann (MPIA)
S5	Galaxy Clusters Survey	exgal	Comparat (MPE)
S6	AGN Survey	exgal	Merloni (MPE)
S7	Galaxy Evolution Survey (WAVES)	exgal	Driver (UWA), Liske (UHH)
S8	Cosmology Redshift Survey	exgal	Richard (CRAL), Kneib (EPFL)
S9	Magellanic Clouds Survey	(<mark>ex)Gal</mark>	Cioni (AIP)
S10	Time-Domain Extragalactic Survey (TiDES)	T-exgal	Hook (Lancaster)


Fifteen new Community Surveys

Survey Name	Туре	Survey (Co-)PI
4MOST survey of dwarf galaxies and their stellar streams (4DWARFS)	Gal	Asa Skuladottir
4MOST Gaia RRLyrae Survey (4GRoundS)	Gal	Rodrigo Ibata
The 4MOST Hemisphere Survey of the Nearby Universe (4HS)	exgal	Edward Taylor, Michelle Cluver
CHileAN Cluster galaxy Evolution Survey (CHANCES)	exgal	Christopher Haines, Yara Jaffé
The White Dwarf Binary survey (WDB)	T-Gal	Odette Toloza, Alberto Rebassa-Mansergas
The 4MOST Strong Lens Spectroscopic Legacy Survey (4SLSLS)	exgal	Thomas Collett
The 4MOST Survey of Young Stars (4SYS)	Gal	Giuseppe Germano Sacco
The 4MOST–Gaia Purely Astrometric Quasar Survey (4G-PAQS)	exgal	Jens-Kristian Krogager
Optical, Radio Continuum and HI Deep Spectroscopic Survey (ORCHIDSS)	exgal	Kenneth Duncan
A Stellar Population Survey using 4MOST (4MOST-StePS)	exgal	Angela lovino
4MOST Complete Calibration of the Color-Redshift Relation (4C3R2)	exgal	Daniel Gruen, Jamie McCullough
Spectroscopic Discovery of Binaries with Dormant Black Holes	T-Gal	Michał Pawlak, Tsevi Mazeh
Understanding of the Baryon Cycle with High-Resolution Quasar Spectroscopy	exgal	Celine Peroux
Stellar Clusters in 4MOST	Gal	Lucatello, Vallenari, Bragaglia
4MOST Chilean AGN/Galaxy Evolution Survey (ChANGES)	(T)-exgal	Franz Erik Bauer, Paulina Lira

- Industrialisation of spectroscopic follow-up for transients + hosts.
- UK-led collaboration: Lancaster, Southampton, Dublin, Belfast, Surrey, UCL, Cambridge + other 4MOST surveys + 4SLSLS
- Enough fibre-hours to target all live-SN in any 4MOST pointing.
- ~10 live and bright SNe in any given 4MOST pointing

~250,000 fibre-hr for time-domain science (~35k live transient spectra + 200k hosts)

TiDES Team - Dublin, 2022

Chilean AGN/Galaxy Evolution Survey (ChAN·GES)

Key specifications

- ~4M parent AGN targets, variability + SED selection, LRS only, 1.4M-fibre hrs
- Goal sky area: >~10k deg² (maximize overlap with LSST) with ~30-60% completeness to r~21-22
- $\sim 2x10^5$ variable-selected AGN to be revisited (2-4x, ~ 6 -month gap)
- Spectral campaign of multi-wavelength AGN in central LSST DDFs to r~23.5 to assess completeness and obscuration corrections.
- ~10⁵ (fibre-hr) ToOs (~3-100 days window) from LSST to explore novel SMBH-related variability events (EVAGN, CSAGN, TDEs, ...)
- ~2000 lensed AGN + up to ~20,000 TDE hosts.
- SNR/AA ~10 for $\rm r_{fib}$ < 20.0/21.0 to ~3 for $\rm r_{fib}$ > 21.5/22.5

Schedule and Milestones

- Jun 2023:
 - All subsystems manufactured, assembled, integrated and verified
 - Start of final full system tests in Europe
- Nov 2023:
 - Full system integrated and verified at AIP, *Preliminary Acceptance* Europe
 - Start shipping to Paranal
- Jul 2024:
 - System delivered, installed and commissioned on telescope
- Oct 2024:
 - Data flow commissioned and survey program validation performed, *Provisional* Acceptance Chile
- Nov 2024 Oct 2029:
 - First science survey of 4MOST

4MOST Observing Strategy

4

• Undecided as yet the extent to which 4MOST will follow LSST footprints. Feasible, but may add unwanted additional complexity to scheduler