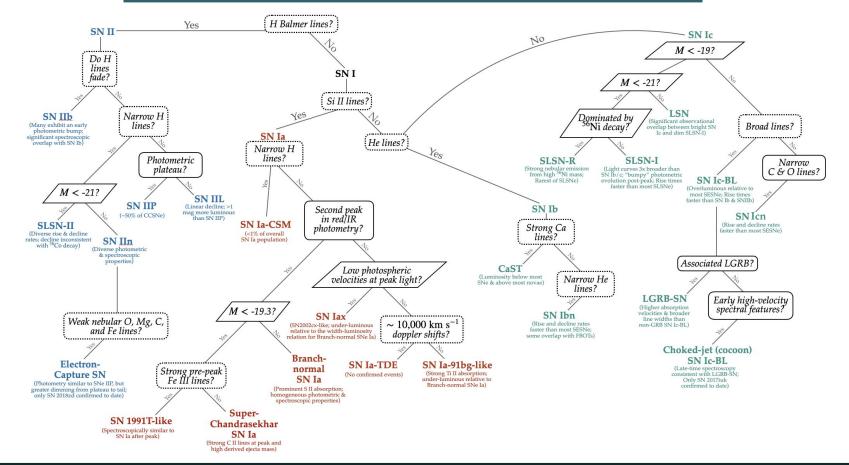
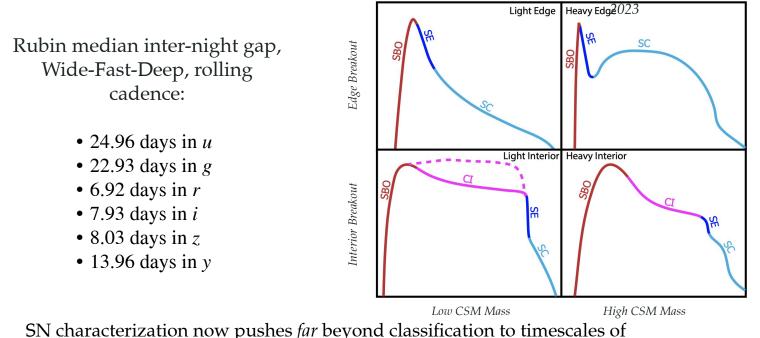
RUBIN PROJECT AND COMMUNITY WORKSHOP, AUGUST 2023

NASA, ESA, and A. Riess (STScI/JHU); SH0ES


FIRST IMPRESSIONS EARLY SN CLASSIFICATION WITH HOST INFORMATION AND SHALLOW LEARNING

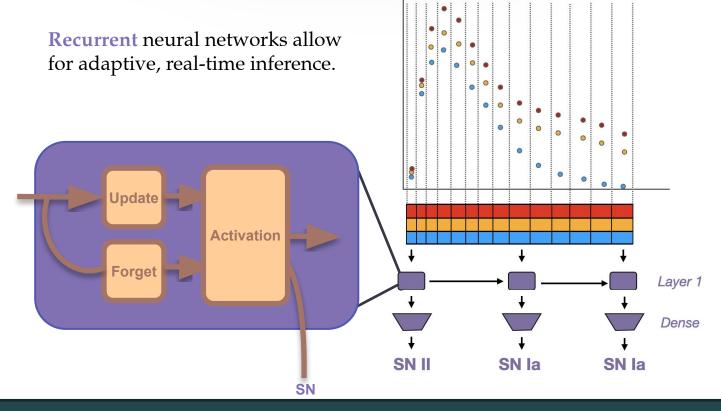
A

Alex Gagliano


with Gaby Contardo¹, Dan Foreman-Mackey¹, Alex I. Malz², Patrick Aleo³ ¹Flatiron Institute, ²Carnegie Mellon University, ³UIUC/NCSA

TAXONOMY OF TERMINAL TRANSIENTS

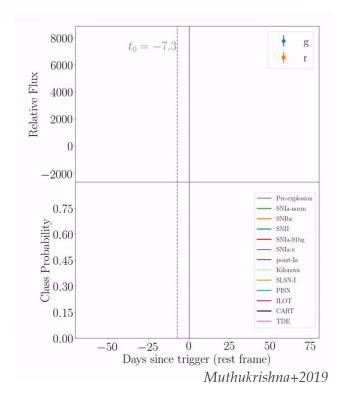
SQUEEZING BLOOD FROM A STONE


The Vera C. Rubin Observatory (2025-2035) will discover 3-4 million SNe among 18,000 deg, breaking exponential scaling for the first time.

SN characterization now pushes *far* beyond classification to timescales of ~hours and wavelengths across the EM spectrum.

Khatami & Kasen,

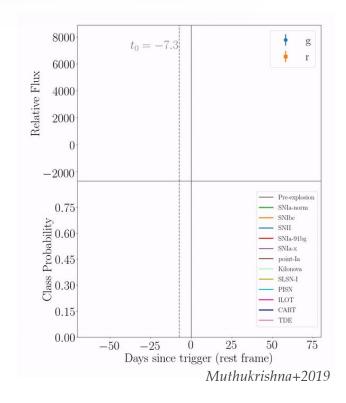
NEURAL NETWORKS HAVE BECOME COMMONPLACE FOR REAL-TIME CLASSIFICATION...



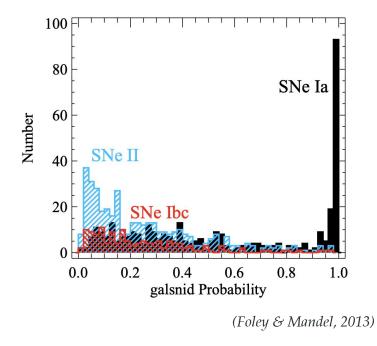
Rubin Project & Community Workshop | August 2023

...BUT OBSTACLES REMAIN FOR RUBIN-ERA PROCESSING.

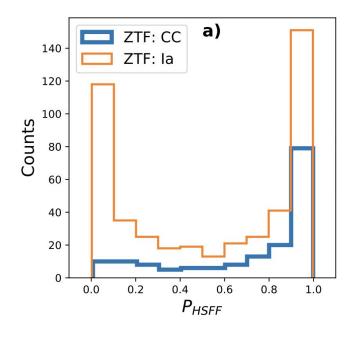
1. Ensuring classification performance on *observed* partial-phase supernovae.


Performance has been validated on simulated samples from the Photometric LSST Astronomical Time-Series Classification Challenge (e.g., *Muthukrishna*+2019; *Möller*+2019; *Qu*+2021).

Obstacles to Rubin-Era Processing

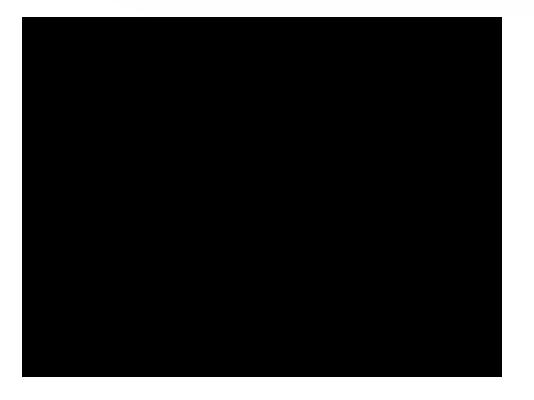

- 1. Ensuring classification performance on *observed* partial-phase supernovae.
- 2. Scaling to 10 million alerts per night.

A significant computational bottleneck is simply loading the model into memory (*Allam Jr., 2023*).



Ensuring Performance without Transient Photometry

SN Ia probability as odds ratio over host galaxy morphology, color, luminosity, and offset.



Random-forest model trained to classify hosts as highly star-forming (within 0.3 Gyr) or not.

(Baldeschi+2020)

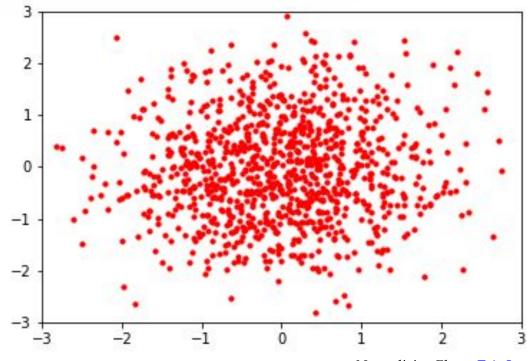
Combining SN+Host Photometry: The "First Impressions" Classifier

Improvements over prior methods:

1. Lightweight model architecture - 10% of RAPID (Muthukrishna+2019), 75% of SCONE (Qu+2021)

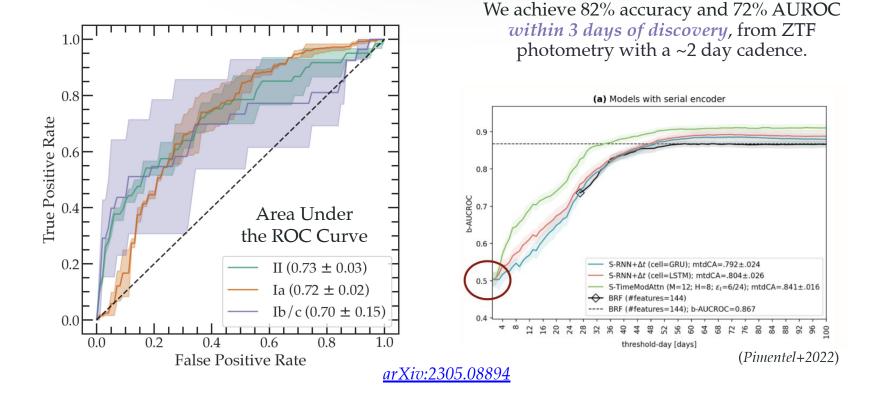
2. Use of contextual information (host-galaxy photometry)

3. Validated on observed samples from ZTF.

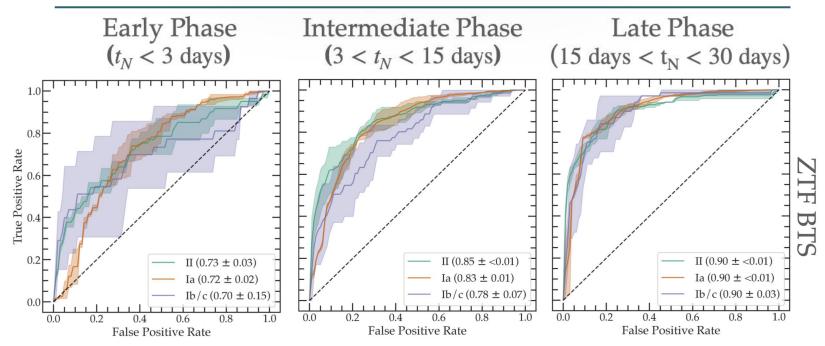

HOST-GALAXY PHOTOMETRY FROM NORMALIZING FLOWS

We want to sample from a multivariate distribution p(x), but don't know how.

Instead, we can approximate p(x) as an *invertible* function *g* applied to a simple latent distribution (e.g., a Gaussian).


Then, we can sample from p(x) by drawing samples u and applying g.

We model *p*(Host *grizy* | *z spec*).



Normalizing Flows, Eric Jang

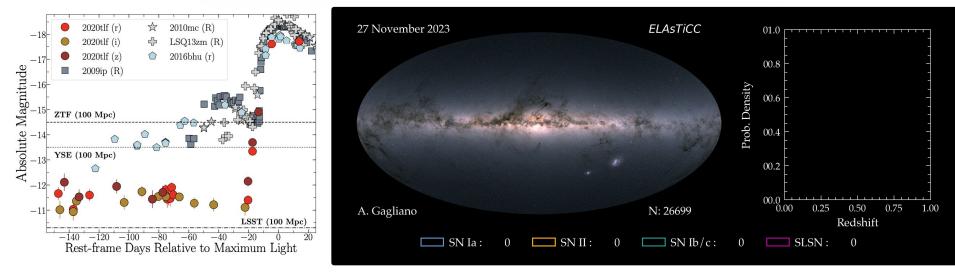
DAY 3 PERFORMANCE: ZTF BTS (FREMLING+2020, PERLEY+2020)

LATE-PHASE PERFORMANCE

Performance suggests a later focus on light-curve information - attention networks could confirm!

Framework easily extended to classes with stronger host-galaxy correlations (e.g., TDEs, SLSNe-I).

Model	b-AUROC	b-AUPRC	b-Precision	b-Recall	b-F ₁ Score	Accuracy
Baseline	0.74 ± 0.04	0.52 ± 0.07	0.58 ± 0.13	0.46 ± 0.09	0.48 ± 0.11	0.82 ± 0.02
No Host	0.72 ± 0.08	0.48 ± 0.09	0.48 ± 0.12	0.41 ± 0.09	0.40 ± 0.08	0.78 ± 0.02
No Primary Training	0.71 ± 0.04	0.45 ± 0.02	0.40 ± 0.18	$0.34 \pm < 0.01$	0.30 ± 0.01	$0.81 \pm < 0.01$
No Adaptive Training	0.65 ± 0.03	0.43 ± 0.02	0.41 ± 0.02	0.39 ± 0.05	0.39 ± 0.03	0.66 ± 0.02


Host-galaxy photometry, balanced training, and re-training on real data improves every classification metric.

	Exc	Exclusively Using Observable			
Observable	Peak FoM	Improvement Factor	Difference in Medians		
Baseline ^a	0.121	N/A	N/A		
Using All Galaxy Data ^b	0.269	2.23	0.34		
Morphology	0.262	2.18	0.15		
Color	0.128	1.06	0.10		
Luminosity	0.135	1.12	0.07		
Effective Offset	0.122	1.02	0.03		
Pixel Rank	0.123	1.02	0.00		

(Mandel & Foley, 2013)

Incorporating (even small) postage stamps will further improve performance.

PROACTIVE SUPERNOVA CLASSIFICATION WITH RUBIN

Deep, precise photometry with LSST will enable broad pre-explosion variability studies, further revolutionizing our transient taxonomy.

DRIVERS FOR SUPERNOVA SCIENCE WITH RUBIN

(TVS Roadmap, Hambleton+2022; Data to Software to Science, Breivik+2022; DESC Science Overview, 2023)

- 1. In-Depth Studies of Fast Phenomena
- 2. Refined Progenitor Theories
- 3. Expanding the Supernova Classification Schema
- 4. Understanding Transient-Host Galaxy Correlations These demand:
 - Automation of the Discovery and Analysis Chain

 - Realistic Precursor Datasets

Simple, context-aware models bring us closer to realizing these goals.

Conclusions

Contextual information can aid early Ia/Ibc/II classification, when SN photometry is minimal, but models should be adaptive to new data *(Gagliano+2023)*.

Simple, scalable inference models will be essential for both population-level and single-object studies of Rubin supernovae. **We should validate them now.**

Rubin Project & Community Workshop | August 2023