

DESI and LSST: Milky Way Science

Vera C. Rubin Observatory Project and Community Workshop August 11, 2022

Connie Rockosi (UC Santa Cruz, SCIPP) with the DESI Milky Way Survey Working Group

Outline

- DESI spectroscopy + Vera Rubin Observatory LSST: a great match for Milky Way, Local Group and stellar science
 - Wide field, high sensitivity: dwarf galaxies, streams, MW halo structure
 - Survey speed: large samples of rare, sparse targets like white dwarfs, blue horizontal branch stars
- DESI Milky Way survey: 14,000 sq. deg, large-scale halo properties
- Early science from DESI Milky Way Survey: white dwarfs
- Exploratory programs:
 - DESI Observations in Andromeda, Draco MW dwarf galaxy
- Future prospects for DESI + LSST science

The DESI Milky Way Survey

U.S. Department of Energy Office of Science

Science Focus: large-scale spatial and kinematic structure of the Milky Way to 150 kpc

- plus plenty of other great stellar and MW science
- 7 million stars
- 1000 second exposures
- Bright time, with Bright Galaxy Survey
- poor weather bright star backup program

DESI Milky Way Survey area Grayscale: DESI MW survey target density

The DESI Milky Way Survey

U.S. Department of Energy Office of Science

- r < 19 (20), Legacy Survey photometry
- Prioritize distant MW halo giants with Gaia
- Nearby Stars: Gaia selection highly complete to 100 pc

Typical accuracy: RV: 1 km/s

[Fe/H]: 0.2 dex

[°] White Dwarfs in DESI MW Survey

U.S. Department of Energy Office of Science

DESI has survey speed and sky coverage for large samples of rare objects

- 5 per sq. deg.
- Final sample: ~66,000
 - more magnetic WDs than previously known
 - ~1000 accreting planet material
 - ♦ > 100 CVs

Credit: Chris Manser, Imperial College London

Credit: Boris Gänsicke, U. Warwick, Chris Manser ICL; see Cooper et al. 2022

Stellar Streams and Milky Way Substructure in DESI

DESI wide field + sensitivity: MW stellar stream kinematics

Dark matter subhalo mass function, MW dark matter halo shape

DESI and the Draco Dwarf Galaxy

U.S. Department of Energy Office of Science

DESI wide field + sensitivity: dwarf galaxy membership, kinematics

• Dark matter subhalo density profile, total mass

DESI RVs for 200 Draco candidates in 45 min (SV observations)

- 5 DESI passes \rightarrow most Draco member candidates in Gaia
- Comparable to big programs on larger telescopes (Walker et al. 2015)

DESI Observations of Andromeda

U.S. Department of Energy Office of Science

DESI special M31 observations

PAndAS Map of M31

Martin et al., 2013

^c DESI Observations of Andromeda

U.S. Department of Energy Office of Science

Three (!) DESI fields:

- Halo/stream: 1.5 hours, dark
- Disk: 45 min, dark
- **σ**_{RV} < 5 km/s @ z < 21.5

INSTRUMENT DESI Observations of Andromeda

U.S. Department of Energy Office of Science

Dey et al., in prep

MW Science with LSST + DESI

U.S. Department of Energy Office of Science

- DESI spectroscopy can help realize Rubin Observatory/LSST Milky Way and stellar science goals
 - LSST proper motions, parallax, photometry \rightarrow fainter, deeper DESI targets for stream, dwarf galaxy and halo kinematics
 - Calibrate stellar photometric metallicity relations (u band!)
 - Spectra of variable stars: ID, population characteristics, RVs, etc.
- More science return from larger DESI + LSST overlap, coordinated follow-up of LSST with DESI

Known Milky Way stellar streams, color-coded by distance

Time for Discussion

A list of science gains with DESI + LSST overlap (Surely incomplete!)

- galaxy-galaxy lensing
- radial velocities of stars for Milky Way dynamics, streams, dark matter halo LF, MF, profile
- galaxy photo-z calibration
- redshifts of strong lenses
- redshifts in deep drilling fields
- radial velocities, ID, physics of variable stars
- redshifts of GW candidates from LSST
- velocity field for kinematic S-Z calibration
- variable stars in early and late phases of stellar evolution
- redshifts for galaxy intrinsic alignment calibration
- transient host galaxy redshifts (cosmic expansion, velocity field for growth of structure
- stellar metallicities: photometric relation calib., stellar nucleosynthesis, chemical evolution

