

Pushing the limits of source detection tools towards LSB light

Nushkia Chamba¹, Caroline Haigh², Michael Wilkinson², Aku Venhola³ & Reynier Peletier²

LSST PCW, 10-14 August 2020

¹Instituto de Astrofisica de Canarias, Tenerife, Spain ²University of Groningen, Groningen, The Netherlands ³University of Oulu, Oulu, Finland

22

Gobierno de Canarias

Consejería de Economía, Conocimiento y Empleo

Unión Europea Fondo Europeo de desarrollo Regional nera de hacer Europa

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721463

Everybody knows Source Extractor (SE) Bertin & Arnouts (1996), but it has its limits

SDSS DR7 image, SE default settings

Teeninga, Moschini, Trager & Wilkinson (2016)

Many other tools exist Can they be automatically optimised to detect LSB light?

Source Extractor (SE) Bertin & Arnouts (1996) General purpose

Profound (PF)

- •Robotham et al. (2018)
- General purpose

NoiseChisel (NC)

- •Akhlaghi & Ishikawa (2015)
- Faint object specialised

Max-Tree Objects (MT)

- •Teeninga et al. (2016)
- Faint object specialised

Basic characteristics

- Measure background
- Threshold image w.r.t background
- Locate sources
- Catalogue and measure properties

	SE	PF	NC	MT
core method	nested thresholds	watershed	watershed	max-tree
initial threshold	$\lambda\sigma$	$\lambda\sigma$	percentile	0
nested objects		-	-	+
# thresholds	discrete	NA	NA	∞
detection by statistical test				-
parallel	+	?	+	
# parameters	12	8	25	2

Source finding using Trees **Max-Tree Objects (MT)**

SDSS DR7 image, MT, 2 relevant parameters

Teeninga, Moschini, Trager & Wilkinson (2016)

A comparison of detection tools **Overview**

- In this work: SE, NC, PF and MTO
- arcsec²)]
- Automatic parameter optimisation
- Four different quality measures
- Tests on real images (FDS, IAC Stripe 82, Hubble Ultra Deep Field)

• Simulated deep data [Fornax Deep Survey, $\mu_{lim} \sim 30$ mag/arcsec² (3 σ ; 100

Ground truth for faint light

Simulated FDS image

Ground truth at 0.1σ

Evaluation Quality criteria

F1 score: Combines precision (purity) and recall (completeness) in pure detection task

$$F_1 = \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

Area score: Optimizes segmentation quality, combining under-merging error (UM) and over-merging error (OM)

Area-score =
$$1 - \sqrt{OM^2 + U}$$

Combined score A:
$$\sqrt{\text{Area-score}^2 + F_1^2}$$

Combined score B: $\sqrt[3]{(1 - OM)(1 - UM)F_1}$

 UM^2

Evaluation **Parameter Optimisation**

- Ten simulated images are used
- Each of the settings is tested on the remaining 9 images

Bayesian optimisation is performed on each image for each quality measure

Results - Summary

Real images - Two IAC Stripe 82 examples

Galactic cirrus

 $\mu_{g,lim} = 29.1 \text{ mag/arcsec}^2 (3\sigma, 100 \text{ arcsec}^2)$ http://research.iac.es/proyecto/stripe82/

Tidal streams, bright sources

Results - Galactic cirrus SExtractor

Optimised for F-score

Results - Galactic cirrus ProFound

Optimised for F-score

Results - Galactic cirrus NoiseChisel

Optimised for F-score

Results - Galactic cirrus Max-Tree Objects

Optimised for F-score

Tidal streams, bright sources

PF

Area

Combined A

Combined B

PF (in R): Too slow

HUDF

NC

SE

PF

UDF 423 Credit: NASA

Area

Combined A

Combined B

PF (in R): Too slow

Background values Talk to me for details!

- Mean background value of simulated image is zero
- Each algorithm has its internal estimator (can be imrpov)
- Both PF and SE consistently overestimated the background: O(10⁻¹ σ)
- MT underestimated the value: area score O(-10⁻¹ σ) and F-score O(-10^{-2} σ)}
- NC showed the strongest performance: $O(\pm 10^{-3}\sigma)$

Concluding remarks How can these results help you?

- Robust, optimised parameters for detection algorithms. SCARLET?
- Evaluation: MT overall most stable and consistent performance (C. Haigh et al. re-submitted to A&A

	MTObjec
Optimised parameters	2
Language	Python/C
Clean edges of detected objects	(H)
Detects galaxy close to star (Stripe 82)	\checkmark
Detects cirrus (Stripe 82)	\checkmark
Isolates spiral substructures (HUDF)	\checkmark

Be aware (beware) of each algorithms limits and failures: do you care about nested objects or only faint outskirts? de-blending?

cts	NoiseChisel	ProFound	SExtractor
	20	8	6
С	С	R	С
	\checkmark	\checkmark	Sometimes
	Fragmented		Fragmented
	\checkmark	-	Sometimes

(b) A fragmented galaxy.

Max Tree Objects: Concept **Component Trees**

Based on decomposition of image into connected components

Teeninga, Moschini, Trager & Wilkinson (2016)