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Everybody knows Source Extractor (SE) 
Bertin & Arnouts (1996), but it has its limits 

SDSS DR7 image, 

SE default settings

Teeninga, Moschini, Trager 

& Wilkinson (2016)



Many other tools exist 
Can they be automatically optimised to detect LSB light?

Source Extractor (SE) 
•Bertin & Arnouts (1996)

•General purpose 

Profound (PF) 
•Robotham et al. (2018)

•General purpose 

NoiseChisel (NC) 
•Akhlaghi & Ishikawa (2015)

•Faint object specialised 

Max-Tree Objects (MT) 
•Teeninga et al. (2016)

•Faint object specialised



Basic characteristics 

• Measure 
background 


• Threshold 
image w.r.t 
background 


• Locate 
sources 


• Catalogue 
and measure 
properties 



Source finding using Trees
Max-Tree Objects (MT)

SDSS DR7 image, 

MT, 2 relevant 


parameters

Teeninga, Moschini, Trager 

& Wilkinson (2016)



A comparison of detection tools 
Overview 

• In this work: SE, NC, PF and MTO 


• Simulated deep data [Fornax Deep Survey, μlim ~ 30 mag/arcsec2 (3σ; 100 
arcsec2 )]


• Automatic parameter optimisation


• Four different quality measures 


• Tests on real images (FDS, IAC Stripe 82, Hubble Ultra Deep Field)



Ground truth for faint light 

Simulated FDS image Ground truth at 0.1σ



Evaluation 
Quality criteria 

F1 score: Combines precision (purity) and recall (completeness) in pure detection task





Area score: Optimizes segmentation quality, combining under-merging error (UM) and over-merging 
error (OM)





Combined score A: 


Combined score B: 

F1 =
precision × recall
precision + recall

Area-score = 1 − OM2 + UM2

Area-score2 + F2
1

3 (1 − OM)(1 − UM)F1



Evaluation 
Parameter Optimisation 

• Ten simulated images are used

• Bayesian optimisation is performed on each image for each quality measure

• Each of the settings is tested on the remaining 9 images



Results - Summary



Real images - Two IAC Stripe 82 examples

Galactic cirrus Tidal streams, bright sources

µg,lim = 29.1 mag/arcsec2 (3σ, 100 arcsec2)

http://research.iac.es/proyecto/stripe82/

http://research.iac.es/proyecto/stripe82/
http://research.iac.es/proyecto/stripe82/


Results - Galactic cirrus 
SExtractor

Optimised for F-score Optimised for Area score

SDSS Stripe 82 field results
9 of 13

IAU Symposium 355, July 8-12, 2019

Optimized for F1 Optimized for Area score
SExtractorProFoundNoiseChisel + SegmentMTObjects

Cut-outOptimized for F1 Optimized for Area score
SExtractor



Results - Galactic cirrus 
ProFound

Optimised for F-score Optimised for Area score

SDSS Stripe 82 field results
9 of 13

IAU Symposium 355, July 8-12, 2019

Optimized for F1 Optimized for Area score
SExtractorProFound



Results - Galactic cirrus 
NoiseChisel 

Optimised for F-score Optimised for Area score

SDSS Stripe 82 field results
9 of 13

IAU Symposium 355, July 8-12, 2019

Optimized for F1 Optimized for Area score
SExtractorProFoundNoiseChisel + Segment



Results - Galactic cirrus 
Max-Tree Objects 

Optimised for F-score Optimised for Area score

SDSS Stripe 82 field results
9 of 13

IAU Symposium 355, July 8-12, 2019

Optimized for F1 Optimized for Area score
SExtractorProFoundNoiseChisel + SegmentMTObjects



Tidal streams, 

bright sources

PF (in R): Too slow 



HUDF

UDF 423

Credit: NASA

PF (in R): Too slow



Background values 
Talk to me for details!

• Mean background value of simulated image is zero 


• Each algorithm has its internal estimator (can be imrpov)


- Both PF and SE consistently overestimated the background: O(10-1σ) 


- MT underestimated the value: area score O(-10-1σ) and F-score O(-10-2σ) 


- NC showed the strongest performance: O(±10-3σ)


 



Concluding remarks
How can these results help you? 

• Robust, optimised parameters for detection algorithms. SCARLET?


• Evaluation: MT overall most stable and consistent performance (C. 
Haigh et al. re-submitted to A&A)


• Be aware (beware) of each algorithms limits and failures: do you care 
about nested objects or only faint outskirts? de-blending? 

(Stripe 82)
(Stripe 82)

(HUDF)





Max Tree Objects: Concept 
Component Trees

• Based on decomposition of image into connected components

Teeninga, Moschini, Trager & Wilkinson (2016)


