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The first thing to try is to measure the flux in each image and
subtract. If | know the PSFs | can make an optimal
measurement of each flux
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Given two images /I; and I, with PSFs ¢; and ¢, how should |
measure a source’s light curve (i.e. the fluxes A; and A,)?
The first thing to try is to measure the flux in each image and
subtract. If | know the PSFs | can make an optimal
measurement of each flux

>oileibri/ ot

> QSE,i/O-rZ,i
where r = 1,2 and i runs over the pixels. For faint sources the
noise is dominated by the sky noise, and we find
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If the images are complicated (e.g. the Galactic centre) this
measurement may not be very good.
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Takada Masahiro and Niikura Hiroko used HSC to image M31
every 2 minutes for an entire night, e.g.

The "simple image" condition isn’t satisfied very well.




& Normalising the Seeing L7

One solution is to match the seeing; if

$1(k)
$2(k)

I5(k) = I2(K)

then :
doihigi — 301 b1

Zi Cbii
measures only the part that’s changed; neighbouring stars

should make the same contribution in the two images and
cancelled out.
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One solution is to match the seeing; if

$1(k)
$2(k)

I5(k) = I2(K)

then
doihigi — 301 b1

Zi Cbii
measures only the part that’s changed; neighbouring stars
should make the same contribution in the two images and
cancelled out.
This doesn’t help much if you're looking for faint unknown
objects that have varied.
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We can solve this problem by calculating /1 — I, directly to
remove the non-variable sources:
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Many people (e.g. Ciardullo, Tamblyn, and Phillips 1990) have
proposed calculating /5 naively in Fourier space, as | did on the
previous slide.
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We can solve this problem by calculating /1 — I, directly to
remove the non-variable sources:

> (Il,i - I/Z,i) i
29

Many people (e.g. Ciardullo, Tamblyn, and Phillips 1990) have
proposed calculating /5 naively in Fourier space, as | did on the
previous slide.

This turns out to be problematic as you need to know the PSFs’
wings well. Problems are revealed in the residual image I, — /5.

AL —A; =




& Cross-Convolution LSST

Another obvious approach (Gal-Yam) is to construct the
difference image as

P2 QN — 1 ® 17

but this sacrifices resolution, and still needs to know the PSF.




& Alard and Lupton S57T

Christophe Alard and | proposed a way to circumvent the need
to know ¢. If we write

I,2:K,®Iz

K = ZarBr
r

and expand

we may minimise

h=>,a (B ®h)

(%

by solving linear equations for a, (and also for the difference in
the sky level).
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Christophe Alard and | proposed a way to circumvent the need
to know ¢. If we write

I,2:K,®Iz

K = ZarBr
r

and expand

we may minimise

h=>,a (B ®h)

(%

by solving linear equations for a, (and also for the difference in
the sky level).

The choice of B" is arbitrary. We used Gauss-Hermite functions,
but you can also use §-functions (i.e. a pixel basis).
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A&L is optimal for the problem it was designed to solve, but...

— Where does the template I, come from?

— What should we do if the template is sharper than the
data?

- What is the consequence of noise in the template?
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We didn’t attempt to solve this problem, but fortunately Nick
Kaiser did 15 years ago. Unfortunately he didn’t publish his
result except as "PSDC-002-01[01]-00".

If I have a set of n realisations of an image /- with known PSFs
¢r, Wwhat is the best estimate for the true image above the
atmosphere, T?
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We know that
Iri = (T® ¢r) + €ri
and let’s assume that €. is an N(0, o?) variable (i.e. we only

care about faint objects) We may estimate each Fourier mode
independently using an ML estimator:

WA SICLEL L )
e S, 1(K)be(K) o2
=55 6 ko2
with variance
Var(T(k)) = !

> (k) /ot
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If we’'d like a template with uncorrelated noise we need to
flatten the noise, resulting in
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& An Optimal Template  £37

If we’'d like a template with uncorrelated noise we need to
flatten the noise, resulting in

fk) — S HK)0r(R) o
\/Zr ¢r(k)2/ar2 \/Zr 1/O-r2

In reality templates are trickier:
There are too few exposures,
which are taken in poor seeing,
at a range of air masses,
contaminated by signal,
- and Balkanised by edges and defects.
If your image is simple enough (e.g. a SNe and you know the
PSF) you can simultaneously derive the template and light
curve: "Scene Modelling" (Holtzman 2008, Guy 2010).
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& Noise in The Template L7

This one is harder for the naive. If the template has noise, then
k @ I, will have correlated noise which complicates the analysis
(for example, those optimal estimates of fluxes were written
assuming diagonal covariance estimates). This is not fatal, but
it is a nuisance. | knew this.

More interestingly if the template is noisy, A&L is no longer
optimal. | hadn’t realised this until reading a paper by Barak
Zackay, Eran Ofek and Avishay Gal-Yam.
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Let us adopt an A&L approach and write
D = Il — K ® Iz

with the Gaussian homoschedastic (faint-object) assumption.
Our model is that the difference image is D convolved with the
PSF ¢;, so taking a Fourier transform and constructing the
log-likelihood gives

o le (K)12(K) — D(K)1 (K))?

o? + K2(k)o3




“& Subtracting Two Noisy Imaged=2a®l

The MLE for D(k) is

D(k) = h(k) ;:z/((’;)/z(k)

with variance

o? + k*(k)o3

Var(D(k)) = 20
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That variance diverges at large k — not surprising, as we're
estimating a deconvolved scene D. As in Kaiser’s analysis (and
as emphasised by Zackay et al.) we can construct an
uncorrelated image by whitening the noise, resulting in

BUK) = (1(k) — s(K:()) | 57

(no ¢! Just the kernel k) with PSF

2 2
o]+ o5

o? + k?(k)os

¢o(k) = ¢1(K)
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That variance diverges at large k — not surprising, as we're
estimating a deconvolved scene D. As in Kaiser’s analysis (and
as emphasised by Zackay et al.) we can construct an
uncorrelated image by whitening the noise, resulting in

2 2
o] + 05

D(k) = (1i(k) — r(k)l2(k)) o2 1 (k)02
(no ¢! Just the kernel k) with PSF

02+ o2
k) = ¢(k)y | =——2—
¢D( ) ¢1( ) 0_% n Hz(k)O'g

i.e. we can estimate x by standard methods, and then correct
it for the noise in the template. You might need to iterate.




& ‘Proper Image Subtraction’ L7

Zackay et al. carry out what amounts to this calculation,
assuming that ¢; and ¢, are known and that therefore
r(k) = é1(k)/p2(k). If we substitute this into D and ¢p we find

2 2
o] + 05

o1¢5(k) + o3¢1(K)

D(k) = (¢2(k)lr(k) — pr(Kk)la(K)) \/

o? + o3
o3 p5(k) + a5¢3(k)

which are Zackay et al.’s equations 13 and 14, except that I've
multiplied D by (02 + 02)/2
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Zackay et al. carry out what amounts to this calculation,
assuming that ¢; and ¢, are known and that therefore
r(k) = é1(k)/p2(k). If we substitute this into D and ¢p we find

2 2
o] + 05

o1¢5(k) + o3¢1(K)

D(k) = (¢2(k)lr(k) — pr(Kk)la(K)) \/

o? + o3
o3 p5(k) + a5¢3(k)

which are Zackay et al.’s equations 13 and 14, except that I've
multiplied D by (02 + 02)/2

One interesting feature of these equations is that they are
symmetric in /; and I; and are thus able to handle better seeing
in the science image than in the template.

¢p(k) = ¢1(k)¢2(’<)\/
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If the template is noise free (o0, = 0), we recover

D(k) = I1(k) — w(K)I2(k)
¢o(k) = p1(k)

which are just the standard equations for difference imaging.
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If the template is noise free (o0, = 0), we recover
D(k) = h(k) — w(k)l2(k)
¢o(k) = p1(k)

which are just the standard equations for difference imaging.
Numerically, once the S/N in the template is more than c. twice
the science image the results are similar to the noise-free case




