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Measuring Variability

Given two images I1 and I2 with PSFs ϕ1 and ϕ2 how should I
measure a source’s light curve (i.e. the fluxes A1 and A2)?

The first thing to try is to measure the flux in each image and
subtract. If I know the PSFs I can make an optimal
measurement of each flux

Ar =

∑
i Ir,i ϕr,i/σ2

r,i∑
i ϕ

2
r,i/σ

2
r,i

where r = 1, 2 and i runs over the pixels. For faint sources the
noise is dominated by the sky noise, and we find

A1 − A2 =

∑
i I1,i ϕ1,i∑
i ϕ

2
1,i

−
∑

i I2,i ϕ2,i∑
i ϕ

2
2,i

If the images are complicated (e.g. the Galactic centre) this
measurement may not be very good.
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M31

Takada Masahiro and Niikura Hiroko used HSC to image M31
every 2 minutes for an entire night

, e.g.
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M31

Takada Masahiro and Niikura Hiroko used HSC to image M31
every 2 minutes for an entire night, e.g.

The "simple image" condition isn’t satisfied very well.
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Normalising the Seeing

One solution is to match the seeing; if

I′2(k) = I2(k)
ϕ1(k)

ϕ2(k)

then

A1 − A2 =

∑
i I1,iϕ1,i −

∑
i I
′
2,iϕ1,i∑

i ϕ
2
1,i

measures only the part that’s changed; neighbouring stars
should make the same contribution in the two images and
cancelled out.

This doesn’t help much if you’re looking for faint unknown
objects that have varied.
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Classical Image Subtraction

We can solve this problem by calculating I1 − I′2 directly to
remove the non-variable sources:

A1 − A2 =

∑
i

(
I1,i − I′2,i

)
ϕi∑

i ϕ
2
i

Many people (e.g. Ciardullo, Tamblyn, and Phillips 1990) have
proposed calculating I′2 naïvely in Fourier space, as I did on the
previous slide.
This turns out to be problematic as you need to know the PSFs’
wings well. Problems are revealed in the residual image I1 − I′2.
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Cross-Convolution

Another obvious approach (Gal-Yam) is to construct the
difference image as

ϕ2 ⊗ I1 − ϕ1 ⊗ I2

but this sacrifices resolution, and still needs to know the PSF.
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Alard and Lupton

Christophe Alard and I proposed a way to circumvent the need
to know ϕ. If we write

I′2 = κ⊗ I2

and expand
κ =

∑
r

arB
r

we may minimise ∣∣∣∣ I1 −∑
r ar (B

r ⊗ I2)

σ

∣∣∣∣2
by solving linear equations for ar (and also for the difference in
the sky level).

The choice of Br is arbitrary. We used Gauss-Hermite functions,
but you can also use δ-functions (i.e. a pixel basis).
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M31
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Problems with Alard/Lupton
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Problems with the A/L Algorithm

A&L is optimal for the problem it was designed to solve, but. . .

Where does the template I2 come from?

What should we do if the template is sharper than the
data?

What is the consequence of noise in the template?
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Whence Came the Template?

We didn’t attempt to solve this problem, but fortunately Nick
Kaiser did 15 years ago.

Unfortunately he didn’t publish his
result except as "PSDC-002-01[01]-00".
If I have a set of n realisations of an image Ir with known PSFs
ϕr, what is the best estimate for the true image above the
atmosphere, T?
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Whence Came the Template?

We know that
Ir,i = (T ⊗ ϕr)i + ϵr,i

and let’s assume that ϵr is an N(0, σ2
r ) variable (i.e. we only

care about faint objects)

We may estimate each Fourier mode
independently using an ML estimator:

lnL ∝
∑
r

(Ir(k)− T(k)ϕr(k))
2

σ2
r

i.e.

T̂(k) =

∑
r Ir(k)ϕr(k)/σ2

r∑
r ϕr(k)2/σ2

r

with variance

Var(T̂(k)) =
1∑

r ϕr(k)2/σ2
r
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An Optimal Template

If we’d like a template with uncorrelated noise we need to
flatten the noise, resulting in

T̂ ′(k) =

∑
r Ir(k)ϕr(k)/σ2

r√∑
r ϕr(k)2/σ2

r

√∑
r 1/σ

2
r

In reality templates are trickier:

There are too few exposures,

which are taken in poor seeing,

at a range of air masses,

contaminated by signal,

and Balkanised by edges and defects.

If your image is simple enough (e.g. a SNe and you know the
PSF) you can simultaneously derive the template and light
curve: "Scene Modelling" (Holtzman 2008, Guy 2010).
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Noise in The Template

This one is harder for the naïve.

If the template has noise, then
κ⊗ I2 will have correlated noise which complicates the analysis
(for example, those optimal estimates of fluxes were written
assuming diagonal covariance estimates). This is not fatal, but
it is a nuisance. I knew this.
More interestingly if the template is noisy, A&L is no longer
optimal. I hadn’t realised this until reading a paper by Barak
Zackay, Eran Ofek and Avishay Gal-Yam.
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Subtracting Two Noisy Images

Let us adopt an A&L approach and write

D = I1 − κ⊗ I2

with the Gaussian homoschedastic (faint-object) assumption.

Our model is that the difference image is D convolved with the
PSF ϕ1, so taking a Fourier transform and constructing the
log-likelihood gives

lnL ∼
∑
k

(I1(k)− κ(k)I2(k)− D(k)ϕ1(k))2

σ2
1 + κ2(k)σ2

2

LSST Project and Community Workshop 2019 • Tucson • August 12-16 15



Subtracting Two Noisy Images

Let us adopt an A&L approach and write

D = I1 − κ⊗ I2

with the Gaussian homoschedastic (faint-object) assumption.
Our model is that the difference image is D convolved with the
PSF ϕ1, so taking a Fourier transform and constructing the
log-likelihood gives

lnL ∼
∑
k

(I1(k)− κ(k)I2(k)− D(k)ϕ1(k))2

σ2
1 + κ2(k)σ2

2

LSST Project and Community Workshop 2019 • Tucson • August 12-16 15



Subtracting Two Noisy Images

The MLE for D(k) is

D̂(k) =
I1(k)− κ(k)I2(k)

ϕ1(k)

with variance

Var(D̂(k)) =
σ2
1 + κ2(k)σ2

2

ϕ2
1(k)
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Subtracting Two Noisy Images

That variance diverges at large k – not surprising, as we’re
estimating a deconvolved scene D. As in Kaiser’s analysis (and
as emphasised by Zackay et al.) we can construct an
uncorrelated image by whitening the noise, resulting in

D̂(k) = (I1(k)− κ(k)I2(k))

√
σ2
1 + σ2

2

σ2
1 + κ2(k)σ2

2

(no ϕ! Just the kernel κ) with PSF

ϕD(k) = ϕ1(k)

√
σ2
1 + σ2

2

σ2
1 + κ2(k)σ2

2

i.e. we can estimate κ by standard methods, and then correct
it for the noise in the template. You might need to iterate.
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‘Proper Image Subtraction’

Zackay et al. carry out what amounts to this calculation,
assuming that ϕ1 and ϕ2 are known and that therefore
κ(k) = ϕ1(k)/ϕ2(k). If we substitute this into D̂ and ϕD we find

D(k) = (ϕ2(k)I1(k)− ϕ1(k)I2(k))

√
σ2
1 + σ2

2

σ2
1ϕ

2
2(k) + σ2

2ϕ
2
1(k)

ϕD(k) = ϕ1(k)ϕ2(k)

√
σ2
1 + σ2

2

σ2
1ϕ

2
2(k) + σ2

2ϕ
2
1(k)

which are Zackay et al.’s equations 13 and 14, except that I’ve
multiplied D by (σ2

1 + σ2
2)

1/2

One interesting feature of these equations is that they are
symmetric in I1 and I2 and are thus able to handle better seeing
in the science image than in the template.
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‘Proper Image Subtraction’
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Sensitivity To Noise Levels

If the template is noise free (σ2 = 0), we recover

D̂(k) = I1(k)− κ(k)I2(k)

ϕD(k) = ϕ1(k)

which are just the standard equations for difference imaging.

Numerically, once the S/N in the template is more than c. twice
the science image the results are similar to the noise-free case

LSST Project and Community Workshop 2019 • Tucson • August 12-16 19



Sensitivity To Noise Levels

If the template is noise free (σ2 = 0), we recover

D̂(k) = I1(k)− κ(k)I2(k)

ϕD(k) = ϕ1(k)

which are just the standard equations for difference imaging.
Numerically, once the S/N in the template is more than c. twice
the science image the results are similar to the noise-free case

LSST Project and Community Workshop 2019 • Tucson • August 12-16 19


