EXPLORING TVS SCIENCE REQUIREMENTS

BROKERS
ALERT-BASED SCIENCE OBJECTIVES

- Real-time transient triggers
 - Early photometric classification
 - Selection of objects for follow-up observations

- Triggers from quality threshold
 - E.g. periodic targets which have been observed for enough cycles to identify a sub-category

- Target-of-Opportunity observations
 - Targeted search for electromagnetic counterparts to GW events
2018 Task Force aimed to

- Stimulate scientists from all fields in astronomy to think through how they will extract targets of interest from LSST
- Understand what information and data products they will require at each stage,
- Understand their requirements for timescales of delivery and modes of interaction with brokers.
- Derive functional and performance requirements and provide feedback to broker developers
- Understand constraints on broker development teams

Francisco Förster Buron, CMM-UChile / MAS
Suvi Gezari, University of Maryland
Melissa Graham, University of Washington/LSST
Ashish Mahabal, Caltech
Gautham Narayan, STScI
Markus Rabus, PUC, Chile
Keivan Stassun, Vanderbilt University
Paula Szkody, University of Washington
Rachel Street, Las Cumbres Observatory
Stephen Smartt, Queen’s University Belfast
Ken Smith, Queen’s University Belfast
2018 SURVEYS

<table>
<thead>
<tr>
<th>Broker Users</th>
<th>Broker Developers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areas of research</td>
<td>Nature of interfaces</td>
</tr>
<tr>
<td>Target selection criteria</td>
<td>Data products ingested</td>
</tr>
<tr>
<td>Require catalog information</td>
<td>Expected/allowed user-base</td>
</tr>
<tr>
<td>Variability metrics</td>
<td>Limits on processing timescales</td>
</tr>
<tr>
<td>Alert dissemination methods</td>
<td>Alert filtering options</td>
</tr>
<tr>
<td>Preferred modes of interaction</td>
<td>Software requirements</td>
</tr>
<tr>
<td>Timescale for access to alert information</td>
<td>Computing resources</td>
</tr>
<tr>
<td></td>
<td>Development timescale</td>
</tr>
</tbody>
</table>

62 responses 6 [team] responses
ALERT CONTENT

LSST alert content sufficient for your science?

- Yes: 75.4%
- No: 24.6%

Requested features:

- Target flux not from LSST: 18 (36.7%)
- Lightcurve history: 11 (22.4%)
- Periodogram parameters: 14 (28.6%)
- Amplitude parameters: 4 (8.2%)
- Probability distribution shape: 8 (16.3%)
- Orbital or movement parameters: 5 (10.2%)
- Variability indices:
- Rapid follow-up photometry:
- Lightcurve history nice to have:
- Lightcurve fit:
- Real-bogus classifier:
- Historically cataloged sources:
- Spectroscopy:
- Cross match with AGN, X-ray catalogs:
- Host galaxy offset/colors/classification:
- Orbital elements/photometric properties of Solar System objects:
- Follow-up with other telescopes:
- Spectra:
- Other data products from L3 tools:
- Simultaneous colors/NUV photometry:
- Pixelated image cutouts:

Color information
Lightcurve metrics
Source contextual information
Classifications
External catalog data
Respondents gave a number of written examples of the selection queries they would like to use.
INTERACTING WITH BROKERS

- Through an interactive website: 50 (82%)
- By writing software of my own which can...: 37 (60.7%)

Pie Chart
- Every few minutes or less: 27.9%
- Once or more an hour: 24.6%
- Once or a few times per day: 18%
- Once or a few times per week: 23%
- Once or a few times per month: 18%
84% of respondents felt it was important for brokers to provide alert classification.

But understanding how alerts are classifications is essential.

- Need to quantify selection biases.
- Want ability to run simulated alert streams through brokers.
- Want to run new filters on older data.
CLASSIFICATION

- Need to extract complex, customized features for a large fraction of events in real-time
 - E.g. to run a pre-trained neural network
- May need to use Bayesian techniques (e.g. MCMC) to evaluate some targets in real-time
 - Leads to high computing overhead
Preferred method of receiving information on alerts of interest

- Email: 17 (36.2%)
- SMS Message: 4 (8.5%)
- RSS Feed: 4 (8.5%)
- VOEvent stream: 17 (36.2%)
- Online page: 27 (57.4%)
- API subscriber: 21 (44.7%)
- Avro serialization/VOEvent lite: 1 (2.1%)
- Database archive: 1 (2.1%)
- Avro stream: 1 (2.1%)
- Email+online link: 1 (2.1%)
- Prefer to pull alerts: 1 (2.1%)
INTERFACING WITH TOM SYSTEMS

- Many users expect to make additional observations in response to LSST alerts
- Need to interface brokers with TOM systems
 - TVS members expect to continue to use essentially all ToO and queue-scheduled telescope facilities
- AEON-compatible facilities under development will have TOM interfaces
- Traditionally-scheduled facilities can also be supported through a TOM system
Subject of discussion at the 2019 LSST workshop for broker developers

Speed of ingest of new alerts to brokers depends on technologies used

- Within ~5-10min is achievable with current technologies
- <1-2min would require more advanced [expensive] technologies
HOW FAST DO YOU REALLY NEED ACCESS TO ALERTS?

http://ls.st/7vb/
OUTSTANDING QUESTIONS

- Need for high-accuracy classifier for galactic transients that depends on a few data-points.
 - Broker solution: classification algorithms + sophisticated alert filtering options
- Catching exotic and unknown transients
- Interfacing with TOMs for rapid follow-up
- Coordinating follow-up among multiple teams and limited telescope resources
- Please complete alerts survey: http://ls.st/7vb/