Evaluating the LSST Observing Strategy: Metrics

Lynne Jones & Peter Yoachim
LSST 2019 PCW
Aug 14, 2019
Current Status

- WP Nov 2018 / SAC guidelines May 2019 / Simulations..
 - See July2019 update on community with more information on FBS 1.2 set of runs
- Not complete, but getting better understanding of what metrics are telling us and what will need to go into report to the SCOC
- Will be releasing more runs and also writeups describing interpretation and comparisons of various runs
- So let’s talk about metrics!
Key Metrics

- Galaxy counts
- Transient recovery
- Astrometry (parallax, proper motion)
- Solar system metrics
- What are we missing?
Galaxy Counts

- Galaxy Count Metric (credit Humna Awan)
- Calculate number of galaxies available for LSS studies

Baseline WFD: 10.8 billion galaxies
newB footprint WFD: 10.6 billion galaxies
Astrometry (Parallax and Proper Motion)

Uncertainty in the proper motion of an r=20 star

Baseline WFD median: 0.14 mas

simple_roll_mod10_sdf0.20 WFD: 0.30 mas

If there is no covariance, the proper motion uncertainty only depends on when observations happen and the centroiding errors. If we do a very aggressive rolling cadence, proper motion error blows up.
Transient Metrics

- Transient metrics: generate population of transients using (PLAsTiCC) light curves, distribute over sky & time, use MAF to test recovery rate

“Pre-peak” criteria: Measure a color before peak, and a rise slope in at least 1 filter

“Well sampled”: Divide LC into 10 bins, demand 5 have observations (any filters). I would love a better criteria!
Intra-night visits FBS 1.2 runs

4k Type Ia SNe

Pairs mixed 62% detected

Pairs same 62% detected

15% measured pre-peak

3% measured pre-peak

17% “well-sampled”

16% “well-sampled”
Solar system metrics

- To calculate metrics, first need to generate simulated observations of the objects
 - NEO (Granvik), MBA (S3M), Trojan (S3M), TNO (CFEPS L7)
 - + sims_movingObjects
 - https://github.com/lsst-sssc/SSSC_test_populations_gitolfs
Solar system metrics

- Discovery metrics (as previously)
 - 3 pairs in 15 nights
 - 3 pairs in 30 nights **
 - .. 3 pairs in 12 nights, 20 nights
 - .. 4 pairs in 20 nights, 3 triplets in 30
 - .. Single detection, single pair
 - .. 3x15 & 3x30 @ SNR=3,4,5.
 - HighVelocity (trailing) pair
Solar system metrics

- Characterization metrics (as previously)
 - “Chance of detecting activity”
 - Bin time (or mean anomaly) over survey (or orbit) and build histogram of visits - what fraction of bins received a visit?
- Inner solar system
 - Lightcurve inversion (updated metric)
 - Color determination (10+ SNR-weighted observations)
 - g + ([r or i] OR [z or y]) (2 colors)
 - 4 of grizy
 - 5 of grizy **
 - 6 of ugrizy
- Outer solar system
 - Lightcurve/Color in 1, 2, 3, 4, 5 ** or 6 filters (30+ obs in first filter, 20+ in secondary)
Solar system metrics

.. will also find a link for downloading full outputs if interest
Analysis

- u band filter swap
- baseline - pairs of visits
- WFD footprint
- rolling cadence
u band filter switch FBS 1.2 runs

- Limit u band to within +/-2 nights of new moon

Bugfix (in 1.3): +0.2 to u band mag
Visits

<table>
<thead>
<tr>
<th></th>
<th>Illum 15</th>
<th>Illum 30</th>
<th>Illum 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>25th%ile</td>
<td>54.000000</td>
<td>55.000000</td>
<td>58.000000</td>
</tr>
<tr>
<td>Mean</td>
<td>59.386335</td>
<td>62.798245</td>
<td>66.956338</td>
</tr>
<tr>
<td>Median</td>
<td>62.000000</td>
<td>63.000000</td>
<td>66.000000</td>
</tr>
<tr>
<td>75th%ile</td>
<td>67.000000</td>
<td>68.000000</td>
<td>71.000000</td>
</tr>
<tr>
<td>Max</td>
<td>1788.000000</td>
<td>3251.000000</td>
<td>3402.000000</td>
</tr>
</tbody>
</table>

CoaddM5

<table>
<thead>
<tr>
<th></th>
<th>Illum 15</th>
<th>Illum 30</th>
<th>Illum 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>22.181656</td>
<td>22.318727</td>
<td>22.004103</td>
</tr>
<tr>
<td>25th%ile</td>
<td>25.728216</td>
<td>25.764568</td>
<td>25.787233</td>
</tr>
<tr>
<td>Mean</td>
<td>25.753742</td>
<td>25.783810</td>
<td>25.803447</td>
</tr>
<tr>
<td>Median</td>
<td>25.867756</td>
<td>25.900715</td>
<td>25.919637</td>
</tr>
<tr>
<td>75th%ile</td>
<td>25.948631</td>
<td>25.968181</td>
<td>25.986368</td>
</tr>
<tr>
<td>Max</td>
<td>27.592408</td>
<td>27.928824</td>
<td>28.064792</td>
</tr>
</tbody>
</table>

Bugfix (in 1.3): +0.2 to u band mag
u band filter switch FBS 1.2 runs
- u band switch
- Motivation for limiting the time u band available comes from DESC/get best u band depth
- Limiting u band availability restricts potential WFD u band depth
- We get u band under good circumstances almost all of the time (even if it’s not “new moon”)

- Re-run with even more emphasis on u during dark time?
 - Look at longer exposures in u band? (& there will be improvement with bugfix in FBS 1.3 too)
Intra-night visits FBS 1.2 runs

- Filters for pairs (same, mix, presto)

- Transient metrics: generate population of transients using (PLAsTiCC) light curves, distribute over sky & time, use MAF to test recovery rate

 “Pre-peak” criteria: Measure a color before peak, and a rise slope in at least 1 filter

 "Well sampled": Divide LC into 10 bins, demand 5 have observations (any filters). I would love a better criteria!
Intra-night visits FBS 1.2 runs

4k Type Ia SNe

Pairs mixed 62% detected

Pairs same 62% detected

15% measured pre-peak

3% measured pre-peak

17% “well-sampled”

16% “well-sampled”
Intra-night visits FBS 1.2 runs

Mixing filters for pairs does have a cost to SSOs.

Set up some small % of visits to be same filters?

<table>
<thead>
<tr>
<th></th>
<th>NEO H=22</th>
<th>MBA H=21.25</th>
<th>Trojan H=18</th>
<th>TNO H=7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline_1exp_pairsame_10yrs</td>
<td>67.3</td>
<td>59.2</td>
<td>57.5</td>
<td>57.7</td>
</tr>
<tr>
<td>baseline_1exp_pairsmix_10yrs</td>
<td>66.5</td>
<td>58.7</td>
<td>56.6</td>
<td>57.0</td>
</tr>
<tr>
<td>baseline_2exp_pairsame_10yrs</td>
<td>66.0</td>
<td>58.2</td>
<td>56.3</td>
<td>56.9</td>
</tr>
<tr>
<td>baseline_2exp_pairsmix_10yrs</td>
<td>65.2</td>
<td>57.8</td>
<td>55.0</td>
<td>56.6</td>
</tr>
<tr>
<td>presto_third_10yrs</td>
<td>62.9</td>
<td>52.7</td>
<td>48.4</td>
<td>54.3</td>
</tr>
</tbody>
</table>

~1% mixing pairs

~2% mix pairs + 2x15s

~5-6% presto_third
Analysis

- Motivation for pairs in different filters comes from characterizing (slowly) changing transients
- Increases pre-peak sampling of SNIa (3% - 15%)
- Pushback comes from worry that SSOs will be harder to discover - there is some impact on SSO discovery, particularly with presto_third in its current form.
- Additional pushback that changing filters is less efficient - ~2% penalty
- Add some small % of visits in same-filter, try to rework presto_third

<table>
<thead>
<tr>
<th>Nvisits</th>
<th>baseline_1exp_nopairs_10yrs</th>
<th>100.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>baseline_1exp_pairsame_10yrs</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>baseline_1exp_pairsmix_10yrs</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>baseline_2exp_pairsame_10yrs</td>
<td>92.4</td>
</tr>
<tr>
<td></td>
<td>baseline_2exp_pairsmix_10yrs</td>
<td>90.5</td>
</tr>
</tbody>
</table>
WFD footprint FBS 1.2 runs

- ‘WFD footprint’

- Galaxy Count Metric (credit Humna Awan)
- Calculate number of galaxies available for LSS studies

Baseline WFD: 10.8 billion galaxies

newB footprint WFD: 10.6 billion galaxies
‘WFD footprint’

More coverage in the north improves discovery of TNOs.

<table>
<thead>
<tr>
<th></th>
<th>NEO H=22</th>
<th>MBA H=21.25</th>
<th>Trojan H=18</th>
<th>TNO H=7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline_1exp_pairsame_10yrs</td>
<td>67.3</td>
<td>59.2</td>
<td>57.5</td>
<td>57.7</td>
</tr>
<tr>
<td>baseline_1exp_pairsmix_10yrs</td>
<td>66.5</td>
<td>58.7</td>
<td>56.6</td>
<td>57.0</td>
</tr>
<tr>
<td>newA10yrs</td>
<td>67.0</td>
<td>58.0</td>
<td>54.9</td>
<td>59.5</td>
</tr>
<tr>
<td>newB10yrs</td>
<td>67.1</td>
<td>58.6</td>
<td>55.9</td>
<td>60.0</td>
</tr>
<tr>
<td>bluer_footprint10yrs</td>
<td>67.5</td>
<td>59.0</td>
<td>57.5</td>
<td>57.2</td>
</tr>
<tr>
<td>gp_heavy10yrs</td>
<td>66.8</td>
<td>58.5</td>
<td>56.1</td>
<td>57.1</td>
</tr>
</tbody>
</table>
WFD footprint FBS 1.2 runs

- ‘WFD footprint’

More coverage in the north improves characterization of TNOs AND NEOs.

Need to add MBC & resonant TNO

<table>
<thead>
<tr>
<th></th>
<th>NEO H=16.5</th>
<th>MBA H=16.5</th>
<th>Trojan H=14.5</th>
<th>TNO H=4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline_1exp_pairsame_10yrs</td>
<td>73.3</td>
<td>98.9</td>
<td>100.0</td>
<td>42.6</td>
</tr>
<tr>
<td>baseline_1exp_pairsmix_10yrs</td>
<td>74.1</td>
<td>99.0</td>
<td>100.0</td>
<td>42.6</td>
</tr>
<tr>
<td>newA10yrs</td>
<td>76.3</td>
<td>99.1</td>
<td>100.0</td>
<td>53.7</td>
</tr>
<tr>
<td>newB10yrs</td>
<td>79.3</td>
<td>99.3</td>
<td>100.0</td>
<td>63.4</td>
</tr>
<tr>
<td>bluer_footprint10yrs</td>
<td>76.1</td>
<td>98.8</td>
<td>99.9</td>
<td>41.8</td>
</tr>
<tr>
<td>gp_heavy10yrs</td>
<td>74.0</td>
<td>99.0</td>
<td>100.0</td>
<td>42.9</td>
</tr>
</tbody>
</table>
Analysis

- Footprint
- Motivated first by DESC desire for more galaxies
- Galaxy counts don’t show clear improvement
- Some motivation from mini-surveys (NES, Euclid, DESI)
- Some improvement for SSOs (discovery and characterization) if WFD footprint extended north

- Return to DESC for clarification on metrics
- Redo footprint with E(B-V) cut exactly (done)
- Redo footprint with 90% WFD and with 825 visits .. look at options to increase visits in N/S (counter poor seeing)
Rolling cadence FBS 1.2 runs

- ‘rolling cadence variations’

SNe group has been running more intensive analysis and giving feedback on sims

From Nicolas Regnault
Rolling cadence FBS 1.2 runs

- ‘rolling cadence variations’

Rolling cadence has some impact on discovery of NEO and MBAs. Have not tested MBCs yet or looked into potential orbital element distribution changes.

~2-3% losses for NEOs and MBAs, slightly better with higher background visits.

<table>
<thead>
<tr>
<th></th>
<th>NEO H=22</th>
<th>MBA H=21.25</th>
<th>Trojan H=18</th>
<th>TNO H=7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline_1exp_pairsame_10yrs</td>
<td>67.3</td>
<td>59.2</td>
<td>57.5</td>
<td>57.7</td>
</tr>
<tr>
<td>roll_mod2_sdf0.05mixed_10yrs</td>
<td>65.3</td>
<td>57.0</td>
<td>58.2</td>
<td>56.9</td>
</tr>
<tr>
<td>roll_mod2_sdf0.20mixed_10yrs</td>
<td>65.3</td>
<td>57.1</td>
<td>57.3</td>
<td>56.7</td>
</tr>
<tr>
<td>roll_mod3_sdf0.05mixed_10yrs</td>
<td>64.3</td>
<td>55.0</td>
<td>58.5</td>
<td>56.5</td>
</tr>
<tr>
<td>roll_mod3_sdf0.20mixed_10yrs</td>
<td>64.9</td>
<td>55.9</td>
<td>58.7</td>
<td>56.8</td>
</tr>
</tbody>
</table>
Rolling cadence FBS 1.2 runs

- ‘rolling cadence variations’

<table>
<thead>
<tr>
<th></th>
<th>NEO H=16.5</th>
<th>MBA H=16.5</th>
<th>Trojan H=14.5</th>
<th>TNO H=4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline_1exp_pairsame_10yrs</td>
<td>73.3</td>
<td>98.9</td>
<td>100.0</td>
<td>42.6</td>
</tr>
<tr>
<td>roll_mod2_sdf0.05mixed_10yrs</td>
<td>68.9</td>
<td>97.7</td>
<td>99.8</td>
<td>41.9</td>
</tr>
<tr>
<td>roll_mod2_sdf0.20mixed_10yrs</td>
<td>69.9</td>
<td>98.1</td>
<td>99.8</td>
<td>42.2</td>
</tr>
<tr>
<td>roll_mod3_sdf0.05mixed_10yrs</td>
<td>66.6</td>
<td>97.0</td>
<td>99.5</td>
<td>42.1</td>
</tr>
<tr>
<td>roll_mod3_sdf0.20mixed_10yrs</td>
<td>67.9</td>
<td>97.9</td>
<td>99.8</td>
<td>42.3</td>
</tr>
</tbody>
</table>

~4-7% fewer NEOs obtaining measurement of grizy colors
Rolling cadence FBS 1.2 runs

Uncertainty in the proper motion of an r=20 star

Baseline WFD median: 0.14 mas

simple_roll_mod10_sdf0.20 WFD: 0.30 mas

If there is no covariance, the proper motion uncertainty only depends on when observations happen and the centroiding errors. If we do a very aggressive rolling cadence, proper motion error blows up. Need full sky coverage in year 1 and 10 to keep proper motion errors low.
Analysis

- Rolling cadence
- Motivated by desire to increase cadence for WFD observations (better discovery for transients)
 - Rolling cadence does better for SN discovery, but doing pairs in mixed filters is largest improvement
- Has some negative impact on discovery and characterization of inner solar system (NEO, MBA) objects
 - Check wider range of rolling cadence runs
 - Run simulations with higher background rate?
- Likely to need full-sky coverage each year for difference imaging templates & calibration
- Likely we’re missing some metrics sensitive to rolling cadence variations