Difference Image Analysis and Machine Learning

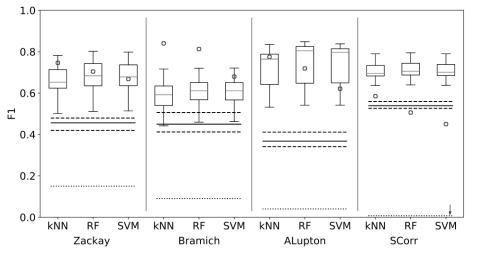
Transient detection techniques

Bruno Sánchez - Dan Scolnic Duke U. - Durham NC

Large Synoptic Survey Telescope

LSST Project and Community Workshop 2019 • Tucson • August 12 - 16

Hello!



Who am I?

- Astronomer (MS degree) 2014 @ UNC Arg.
- PhD in April 2019 @ UNC Arg. (advised by Dr. M. Domínguez)
- Started postdoc in June 2019 @ Duke (supervised by Dr. D. Scolnic)

Background in...?

- Difference Image Analysis (DIA) techniques
- Involved in GW counterpart search
- Combined DIA with Machine Learning to clean candidate samples

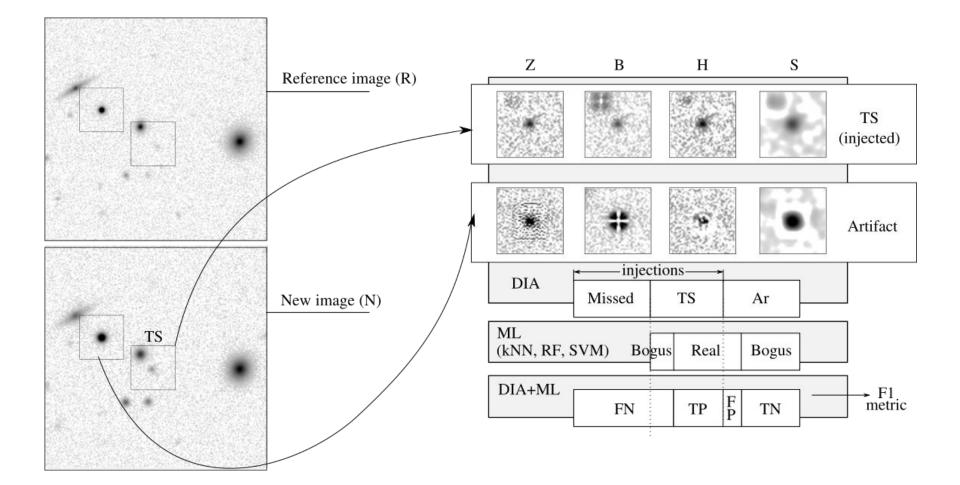
Difference Image Analysis

Useful as a direct comparison technique between images This is needed to find *transient variability events*

 $\begin{array}{ll} R: reference image (also template, coadd, etc.)$ N: new image (science)$ $Ker: convolution kernel$ $D(x,y) = N(x,y) - R(x,y) * Ker(u,v)$ $$

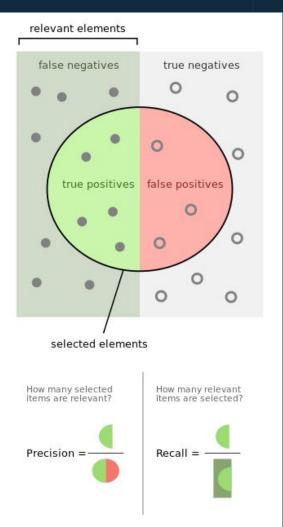
There are several subtract techniques:

• Alard & Lupton (1998) $\longrightarrow Ker(u,v) = \sum_{i} k_i B_i(u,v)$


• Bramich (2008) — Ker
$$(u,v) = \sum_i k_i \delta(u-u_i,v-v_i)$$

• Zackay et al. (2016)
$$\longrightarrow \widehat{D} = \frac{z_R \ \widehat{P_R} \ \widehat{N} - z_N \ \widehat{P_N} \ \widehat{R}}{\sqrt{\sigma_N^2 z_R^2 |\widehat{P_R}|^2 + \sigma_R^2 z_N^2 |\widehat{P_N}|^2}}$$

Estimate performances...



The metrics used

Using the predictive errors from ML

Can be calculated before using ML or after, and see if it improved...

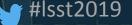
Before ML:

True Positive: detected true *transient source* (TS) False Positive: detection produced by bad subtraction *artifact* (Ar) False Negative: a lost or *missed* transient object

After ML:

True Positive: TS classified correctly False Positive: artifact erroneously classified as a TS False Negative: a TS discarded by mistake True Negative: an artifact correctly discarded

Important derived metric:


$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Parameters of the simulations for this study

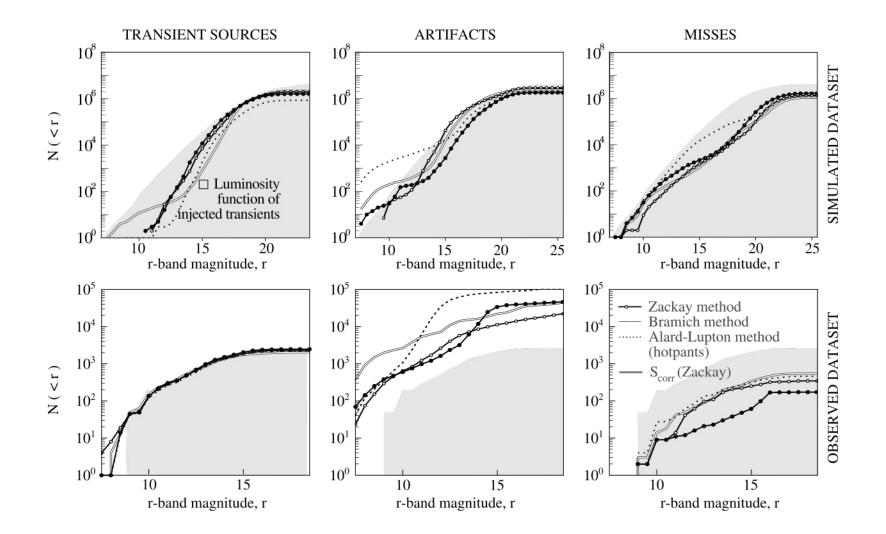

			TOROS instruments				
PARAMETER	UNITS	VALUES	EABA	TOROS	TORITOS		
aperture of the telescope	[m]	[0.4, 0.6, 1.54]	1.54	0.6	0.4		
reference seeing FWHM	[arcsec]	[0.8, 1, 1.3]	1.3	0.8	0.8		
new image seeing FWHM	[arcsec]	[1.3, 1.9, 2.5]	2.5	1.0	1.0		
plate scale	[arcsec/pix]	[0.3, 0.7, 1.4]					
exposure times	[sec]	[60, 120, 300]					
stellar density	[stars per sq deg]	[4e3, 8e3, 32e3, 64e3, 128e3, 256e3]					
stellar luminosity distribution exponent	[dexp per mag]	[0.1, 0.5, 0.9]					
background brightness (R)	[mag per arcsec ²]	[20, 21, 22]					
background brightness (N)	[mag per arcsec ²]	[18, 19, 20]					
relative brightness from host	r-band magnitudes	sampled from Unif(-4,1)					
angular distance from host	half light radius	sampled from Unif(0, 5)					

Table 1: Parameter space for simulated images to be explored for transient detection.

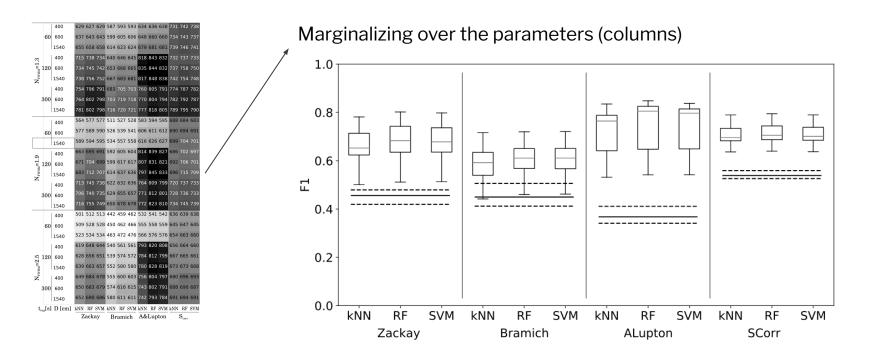
Photometric results (before ML)

7

After using ML: F1 measure

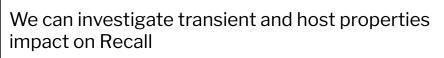
:	300	600 1540		690	686	574 580 kNN	611	611		793	791 784 SVM	691		
		400				555								
N _{FWHM} =2.5		1540	639	663	657	552	580	580	780	828	819	673	673	668
12.21	120	600	628	656	651	539	574	572	784	812	799	667	665	661
		400	619	648	644	540	561	561	793	820	808	656	664	660
		1540	523	534	534	463	472	476	566	576	576	654	663	660
	60	600	509	528	528	450	462	466	555	558	559	645	647	645
		400	501	512	513	442	459	462	532	541	542	636	639	638
$\mathbf{N}_{\mathrm{FWHM}}$	500	1540	716	755	749	650	678	678	772	823	810	734	745	739
	300	600	706	740	735	629	655	657	771	812	801	728	736	733
	1	400	713	745	738	622	632	636	764	809	799	720	737	733
	120	1540	683	712	707	614	637	636	797	845	833	696	715	709
=1.9		600	671	704	699	599	617	617	807	831	821	692	706	701
- Carton	ا ا	400	663	695	691	592	605	604	814	839	827	686	702	697
(60	600 1540	1			534								
		400				526								
					577			528						
	300	600 1540		802 802				718 721						
	300	400		796				703					787	
${ m N}_{ m FWHM}$ =1.3		1540			752			681			100000000			
	120	600		745				665					758	
		400			734			645						
		1540			658			624					746	
	60	600	637	643	643	599	605	606	648	660	660	734	743	737
		400	629	627	629	587	593	593	634	636	638	/31	/42	/38

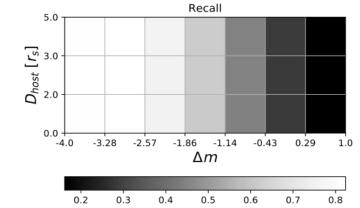
- Groups divided by simulation parameters
- Measure the F1 value (here we display F1x10^3)
- Groups by:
 - Seeing FWHM (1.3, 1.9, 2.5)
 - Exposure time (1 min, 2 min, 5 min)
 - Mirror size (40mm, 60 mm, 1540mm)
- Columns are DIA+ML combination
 - DIA methods: ZOGY D , Bramich, A&L, ZOGY S
 - ML methods: kNN, RF, SVM
- These are final scores, after ML implementation
- It would reflect the final F1 measure of the survey, only calculable given that we know the population of true transients


This analysis is applicable to DC2.

We would not have the simulation parameters but we can estimate this grouping by observing conditions and transient true information

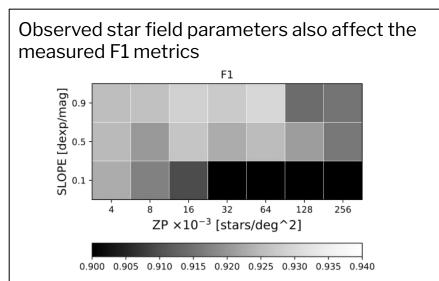
How ML changes the picture? F1 measure




DIA only F1 quartiles as lines -- **DIA+ML** F1 quartiles using boxes

Takeaway:

- The ML helps DIA methods to clean samples.
- If DIA results show high contamination this provides a better training set
- The final F1 shows A&Lupton + RandomForest as the best contender
 - More complete and clean final sample
 - Real objects easier to distinguish from artifacts



Distance to host center (D) in galaxy scale radius units vs the magnitude difference (Δm)

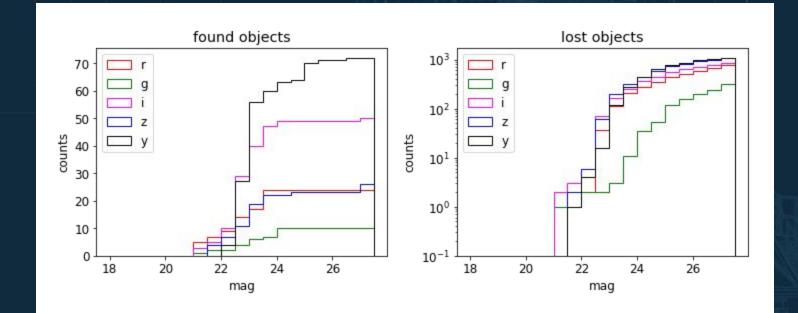
We find that distance to galaxy host center does not have a big impact on Recall as the magnitude difference does. It's easier to spot if we have larger brighness contrast.

This should be further investigated though, using realistic galaxy brightness profiles

The SLOPE shows the log slope of Star Luminosity Function of the observed field. ZP is the total stellar density of the observed field.

This suggests that if we have more and brighter stars we lose performance. The more extreme values of SLOPE and ZP correspond to galactic latitudes up to 5° and limiting magnitude of r~19

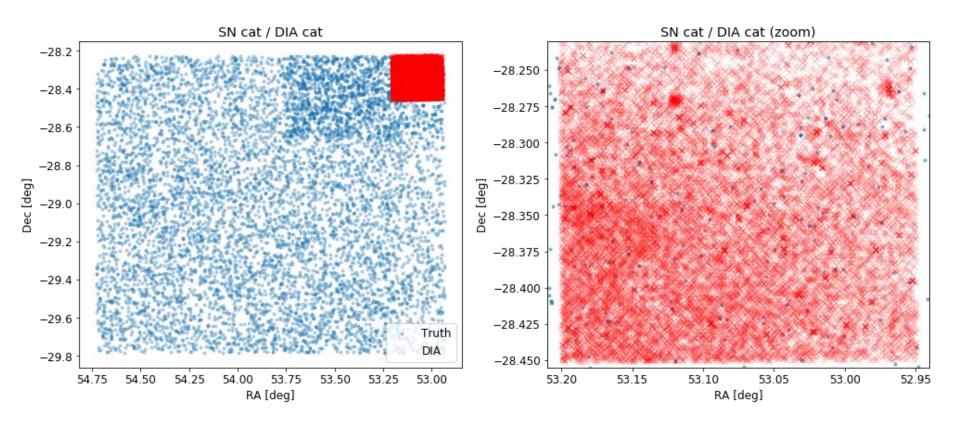
Would be interesting to see this for LSST


***** #lsst2019

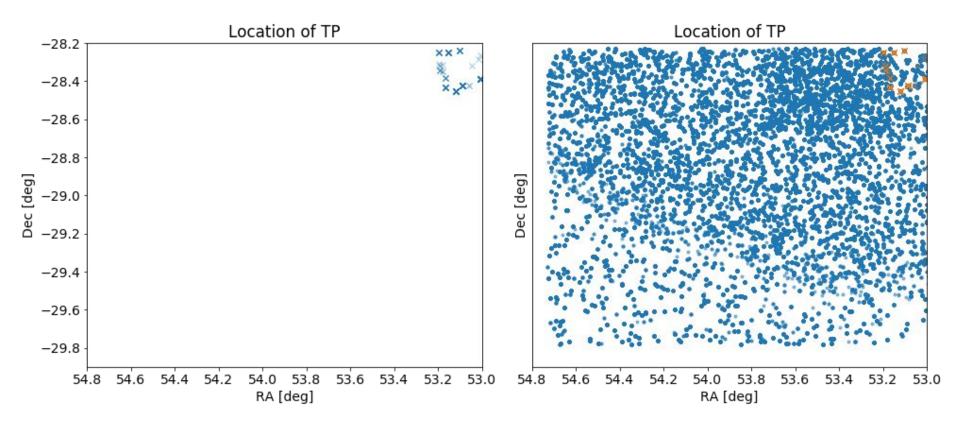
Recent work using DC2

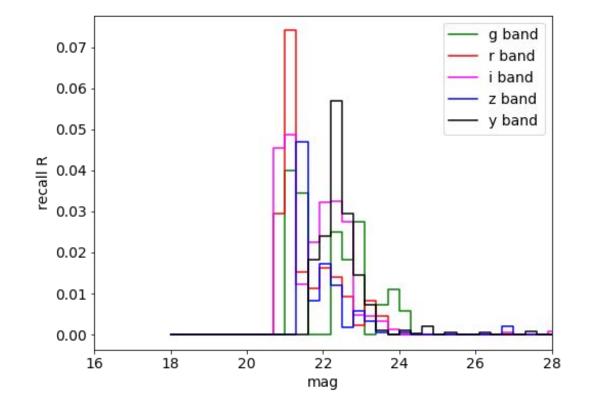
Using the DIA catalogs and truth variable catalogs attempted to measure the metrics. Used a coordinate and time matching strategy

Found really *poor performance*, finding less than a tenth of the true transients present in sample



Run 1.2 Truth variable vs DIA Object catalogs


By plotting their positions in the sky we could conclude that coordinates have issues and do not match


Run 1.2 Truth variable vs DIA Object catalogs

Marking the objects we actually find in crosses

Run 1.2 Truth variable vs DIA Object catalogs

• Again Recall represents a "recovery rate"

 $R = \frac{\# detected \ sources}{\# simulated \ sources}$

- For this sample, in the best case we are **not detecting the 93%** of the transients
- This is extremely low, potentially pointing a **bug** in the catalogs
- This is a good figure to estimate how we are doing transient detection
- Good as a future validation test

Summary and thoughts

- DC2 is an excellent opportunity to test DIA actual implementation results
- Exploring configurations as well as differences among techniques, and results they yield
- Does ML improves the performances? Is it really necessary?
- Influence of photometric properties of transients (colors?)
- Dependencies on the environment (host galaxy brightness profile, distance to its center)
- Dependencies on image quality

