
DESC Data Challenge 1
(DC1) DM Processing
workflow

Tony Johnson (SLAC)
LSST All Hands -- August 2017

Background
● DESC has developed a single workflow which can be

used for Twinkles and DC1
○ Runs image differencing and/or full level 2

processing
○ This has been setup to run using SLAC workflow

engine with jobs running at NERSC
● Run multiple times

■ Twinkles vs DC1
■ Imsim vs Phosim
■ Dithered vs Undithered
■ Bugs vs no-bugs (perhaps)

○ Total cost at NERSC: ~125k core/hours, 30k jobs
○ Elapsed time typically 2 weeks

● For twinkles we realize that what we really need is a
workflow which simulates “year-by-year” processing

○ Work in progress

http://srs.slac.stanford.edu/Pipeline-II/exp/SRS/taskout.jsp?task=43430007&gvOrientation=TB

Workflow essential features
● Centralized workflow able to submit to

multiple distributed inhomogeneous clusters
● Complete (permanent) history of what was

done
○ Able to run multiple workflows at once (multi-tenant)

● Ability to rerun subsets of processing which
failed

○ Or things which appeared to succeed

● Good diagnostics, in particular ability to
summarize cpu/wallclock/memory usage etc

○ Broken down by process/stream/etc

Problems and solutions
● Problem: Understanding how to optimally use DM

○ Solution: Use the excellent cookbook produced by Simon Krughoff

● Problem: Understanding how to parallelize workflow
○ Solution: Interrogate Simon about details of cookbook
○ Future: Make use of supertasks?

● Problem: Ingest phosim/imsim data
○ Official solution from cookbook insanely slow and non-parallelizable
○ Unofficial solution: Temporary DESC rewrite

● Problem: Obscure DM error messages
○ Solution: Ignore them and hope they were not important (some of them were)
○ Future: Need to incorporate meaningful diagnostics into workflow

● Problem: Getting DM expertise to help solve problems/bugs
○ Solution: Get help from Paul Price and Robert Kupton (priceless)
○ Future:

■ Need to develop closer relationship between DM and DESC
■ Spread DM expertise within DESC, including understanding future roadmap
■ Make DM more aware of desc specific issues (e.g. NERSC)

https://github.com/tony-johnson/PhosimIngest

Problems and solutions (continued)
● Problem: NERSC (and similar super-computer centers)

○ Problem: Limited slots in serial queues
■ Solution: Use “pilot” like functionality to suck jobs into slurm jobs running on multiple complete nodes

○ Problem: Limited time limit in queues
■ Solution: Rerun jobs which run out of time
■ Future: Support for checkpointing (possible with DM?)

○ Problem: Limited IO capabilities, especially for meta-data heavy python
■ Solution: Install code into contrib area (limited benefit)
■ Solution: Use shifter/docker to encapsulate code into “in-memory” docker image
■ Future: Eliminate python for production running

○ Problem: Memory Usage
■ Some coadd jobs take > 20GB -- NERSC has 2GB (or less) per core

○ Problem: Shifter (memory usage and single point of failure)
■ Solution: Bug report filed, and transfer of knowledge in process

○ Problem: KNL
■ Solution: Try it

○ Problem: Downtime and long queue times
■ Solution: Suck it up
■ Future: Need mechanism to give DESC input to NERSC

Conclusions
● Getting DM processing to work at DC1 scale at NERSC was not trivial

○ Not as smooth (=automated) as I would like, but it does work

● We need to scale this up for DC2 (and DC3)
○ Ideally we would standardize on the same tools that DM is using
○ But the challenges of running at NERSC, and at large scale, may present unique challenges

■ We should work together to fix them

