

(Incomplete) review of inner Milky Way science drivers

Will Clarkson University of Michigan-Dearborn

LSST 2017 Project & Community Workshop Milky Way and Microlensing Breakout Tuesday August 15th, 3:30pm

LSST2017 • Tucson, AZ • August 14 - 18, 2017

Var I

(Note none of the approved DDFs are in the Plane.)

Deep-drilling fields (4 approved)

Mini-surveys, *currently*:

- Galactic Plane
- South Celestial Cap and Magellanic Clouds
- Northern Ecliptic Spur

Additional "Special programs," e.g.

- Twilight Survey
- Mini-moons
- Meteor-sized impactors

Select field(s)

"Static science"

Astrometric and Photometric calibration for the main survey

(Photometric) Variability

Planetary microlensing

Red-giant variability

Transiting extrasolar planets

New short-timescale transients

Accretion/outflow in X-ray binaries

Dwarf Novae and Type Ia SNe

Microlensing constraints on black hole Dark matter

Thick-disk structure (RR Lyrae) ISM (RR Lyrae)

Extend Gaia-type investigations to the Bulge

Many-fields

Optical-waveband constraints on the ISM (synergy with NIR)

Kinematic sample of Red Clump Giants in the inner MW for Galactic Structure

DECam shows that a seeing-limited imager *can* reach the
Bulge MS turn-off even in highly crowded regions. Berry et al. 2012

Example: Reddening - With a few exposures per field, can use the $\{r,i,z\}$ color-color method of <u>Berry et al. (2012 ApJ 757, 166</u>) to estimate reddening from static photometry

(This {r,g-r} CMD from <10 images of a single DECam field, by UM-Dearborn undergrad Mike Conrad, from the Blanco DECam Bulge Survey, PI Mike Rich)

With a more WFD-like allocation , can use RR Lyrae to estimate reddening.

(From Saha et al. 2017 in prep)

Can imagine doing this all over the Bulge...

- Example wide-field surveys:
 - VPHAS+ (u,g,r,i,Ha, 2011-ongoing); <u>http://www.vphasplus.org/</u>)
 - VVV (Z,Y,J,H,Ks, 2009-2014); <u>https://vvvsurvey.org/</u>
 - (and its extension, VVVX, observations ~2016-2019)
 - With 9 year baseline VVV+VVVX should provide a proper motion precision of ~200 μas/yr: 1) the longer baseline; 2) benefit of more epochs

Galactic Structure (e.g. RR Lyrae, Cepheids, RCGs); observe regions difficult for Gaia.

Right: prediction for r-band apparent magnitude of Red Clump Giants (RCGs) in the inner 20x15 degrees of the Milky Way, using the VVV extinction model. RCG in the white regions are either confusion-limited, depth-limited or are brighter than LSST's expected saturation limit at 15s.

Figure prepared by Oscar Gonzalez, STFC

Variability on months-years; transient outbursts, microlensing (of various types of object) Events rare → wide

"Slow"-microlensing by nearby compact objects (Wyrzykowski et al. 2016 MNRAS 458, 3012)

-0.1

0.1

<Δi, ΔR>

Events rare \rightarrow wide-field Long-term \rightarrow photometric stability Want to push to fainter objects \rightarrow sensitivity \rightarrow all LSST

Optical *precursor* rise for (black hole) X-ray transient outbursts?

 Can trace the compact object mass function and thus stellar evolution

 Constraints on intermediate-mass black hole Dark Matter through microlensing

 Dwarf Novae duty cycles (fraction of time in a bright state) as a probe of the stellar luminosity function

University; see also Britt et al. (2015 MN)

- Examples of short-timescale variability in the Szkody et al. (2011) DDF whitepaper (<u>Magellanic clouds and select Galactic</u> <u>globular clusters</u>)
 - Compact objects and the accretion/outflow process
 - Cataclysmic Variables and AM CVn systems
 - Supersoft X-ray sources
 - RGB variability

 E.g. <u>Jacklin et al. (2015)</u> comparison of transit recovery in Baseline (left) to Deep drilling (right; also <u>Jacklin et al. 2017</u>);:

(a) Regular Cadence

(b) Deep Drilling Cadence

"At the same time, we find that the LSST deep drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 d, and a simple BLS power criterion robustly distinguishes ~98% of these from photometric (i.e. statistical) false positives."

- Example from the <u>Observing Strategy Whitepaper</u> chapter 10.3:
 - 15-30min cadence with LSST simultaneous with WFIRST
 - 1-day cadence with LSST 1 year before and after WFIRST

Category	$100M_\oplus$	$10M_\oplus$	$1 M_{\oplus}$	Total
WFIRST-events	417	127	33	577
$i \leq 23$	88	30	13	131
$\pi_{\rm E}$ measured	22	8.2	2.7	32.9
$M_{\rm L}$ measured	5.9	3.4	1.5	10.8

 Figure 8.6 from the <u>LSST Science Book</u>: Discovery timescales for luminous optical transients and variables

"Static science"

Many-fields

	"Static science"		(Photometric) Variability	
Astrometric and Photometric calibration for the main survey		Planetary microlensing		
			Red-giant variabilit	у
			Transiting extrasolar planets	
Legacy datasets		for new le transients		
	Extend Gaia-type			X-ray binaries
	to the Bulge			
	0		Dwarf Novae and T	ype la SNe
Optical-waveband constraints on				
the ISM (synergy with NIR)		Microlensing constraints on black		
			hole Dark matter	
	Kinematic sample of Red Clump		Thick dick structure	
Galactic Structure		ISM (RR Lyrae)		
	Galactic Structure		ISM (RR Lyrae)	