Transients and Variable Stars: Followup in the Era of LSST

Lucianne Walkowicz
Princeton University
Co-chair, LSST Transients & Variable Stars Science Collaboration
Transients and Variable Stars: “Followup” in the Era of LSST

Lucianne Walkowicz
Princeton University
Co-chair, LSST Transients & Variable Stars Science Collaboration
LSST Transients & Variable Stars

Co-chairs: Lucianne Walkowicz & Ashish Mahabal

Ghaleb Abdulla • LLNL
Suzanne Hawley • UW
Arne Rau • MPI
Eric Agol • UW
Arne Henden • AAVSO
James E. Rhoads • Arizona State
Marcel Agueros • Columbia
Eric Hilton • U Hawaii
Mercedes Richards • Penn State
Scott Anderson • UW
Daniel Holz • LANL
Stephen Ridgway • NOAO
David Arnett • U of A
Steve Howell • NOAO
Alexandre Roman • U. La Serena
Charles Bailyn • Yale
Mark Huber • U Hawaii, IfA
Roger Romani • KIPAC
Andrew Becker • UW
Zeljko Ivezic • UW
Virginia Trimble • UC Irvine
Derek Fox • Penn State
Tom Matheson • NOAO
Eliot Quataert • UC Berkeley
Robert Williams • STScI
Wayne Rosing • LCOGT
Edo Berger • CfA
Lynne Jones • UW
Abi Saha • NOAO
Josh Bloom • UC Berkeley
Mario Juric • LSSTC
Roberto Saito • U Catolica de Chile
Howard Bond • STScI
Steven Kahn • SLAC
Masao Sako • U Pennsylvania
Tim Brown • LCOGT
David Kaplan • U Wisconsin
Dimitar Sasselov • CfA
S. Brad Cenko • UC, Berkeley
Josh Grindlay • CfA
Hakeem Oluseyi • FIT
Zoltan Haiman • Columbia
Tom Vestrand • LANL
Brenda Frye • Steward
Marc Moniez • LAL
Alistair Walker • NOAO
Chris Fryer • U of A
Samaya Nissanke • CalTech
Lucianne Walkowicz • Princeton
Suvi Gezari • U Maryland
Mansi Kasliwal • Carnegie
Edward Schmidt • U Nebraska
Rolf Chini • U Catolica del Norte
Adam Kowalski • UW
Allen W. Shafter • SDSU
Mark Claire • U East Anglia
Shri Kulkarni • IPAC Caltech
Avi Shporer • Caltech
Kem Cook • Independent
Peter Kurczynski • Rutgers
Chris Smith • NOAO CTIO
Nick Cowan • Northwestern
Knox S. Long • STScI
Nathan Smith • U of A
Victor Debattista • U Central Lancashire
Julie Lutz • UW
Paula Szkody • UW
Rosanne Di Stefano • CfA
Lucas Macri • Texas A&M
James P. Theiler • LANL
Jeremy Drake • Harvard CfA
Ashish Mahabal • IPAC Caltech
Przemyslaw Wozniak • Los Alamos
Eran O. Ofek • IPAC Caltech
LSST Transients & Variable Stars

Co-chairs: Lucianne Walkowicz & Ashish Mahabal

- Ghaleb Abdulla • LLNL
- Suzanne Hawley • UW
- Arne Rau • MPI
- Eric Agol • UW
- Wayne Rosing • LCOGT
- Arne Henden • AAVSO
- James E. Rhoads • Arizona State
- Marcel Agueros • Columbia
- Mario Juric • LSSTC
- Edo Berger • CfA
- Lynne Jones • UW
- Josh Bloom • UC Berkeley
- Roberto Saito • U Catolica de Chile
- Abi Saha • NOAO
- Howard Bond • STScI
- Masao Sako •
- Steven Kahn • SLAC
- Tim Brown • LCOGT
- Masao Sako •
- Mark Huber • U Hawaii
- Alexandre Roman • U Penn
- Charles Bailyn • YC
- Tom Vestrand • LANL
- Steve Howell • NOAO
- Oliver Oluseyi • FIT
- Alexandre Roman • U Penn
- Rohit Sathyaprakash • UC Berkeley
- Zoltan Haiman • Columbia
- Nick Cowan • Northwestern
- Victor Debattista • U Central Lancashire
- Chien Wang • UC Irvine
- Brenda Frye • Steward
- Zeljko Ivezic • U Penn State
- Marc Moniez • LAL
- Samaya Nissanke • CalTech
- Robert Williams • STScI
- Lucianne Walkowicz • Princeton
- Dylan Stryker • UC Berkeley
- Chris Fryer • U of A
- Eliot Quataert • UC Berkeley
- Robert Williams • STScI
- Suvi Gezari • U Maryland
- Przemyslaw Wozniak • Los Alamos

Note: Not all simultaneously in outburst.

Thursday, September 12, 2013
LSST Data Products

Application Layer -
Generates open, accessible data products with fully documented quality

<table>
<thead>
<tr>
<th>Processing Cadence</th>
<th>Image Category (files)</th>
<th>Catalog Category (database)</th>
<th>Alert Category (database)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nightly</td>
<td>Raw science image</td>
<td>Source catalog (from difference images)</td>
<td>Transient alert</td>
</tr>
<tr>
<td></td>
<td>Calibrated science image</td>
<td>Object catalog (from difference images)</td>
<td>Moving object alert</td>
</tr>
<tr>
<td></td>
<td>Subtracted science image</td>
<td>Orbit catalog</td>
<td>Data quality analysis</td>
</tr>
<tr>
<td></td>
<td>Noise image</td>
<td>Source catalog (from calibrated science images)</td>
<td>Alert statistics & summaries</td>
</tr>
<tr>
<td></td>
<td>Sky image</td>
<td>Object catalog (optimally measured properties)</td>
<td>Data quality analysis</td>
</tr>
<tr>
<td></td>
<td>Data quality analysis</td>
<td>Data quality analysis</td>
<td>Data quality analysis</td>
</tr>
<tr>
<td>Data Release</td>
<td>Stacked science image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Annual)</td>
<td>Template image</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calibration image</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RGB JPEG Images</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data quality analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LSST Data Products

Application Layer -
Generates open, accessible data products with fully documented quality

<table>
<thead>
<tr>
<th>Processing Cadence</th>
<th>Image Category (files)</th>
<th>Catalog Category (database)</th>
<th>Alert Category (database)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nightly</td>
<td>Raw science image</td>
<td>Source catalog (from difference images)</td>
<td>Transient alert</td>
</tr>
<tr>
<td></td>
<td>Calibrated science image</td>
<td>Object catalog (from difference images)</td>
<td>Moving object alert</td>
</tr>
<tr>
<td></td>
<td>Subtracted science image</td>
<td>Orbit catalog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise image</td>
<td>Data quality analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sky image</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data quality analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Release (Annual)</td>
<td>Stacked science image</td>
<td>Source catalog (from calibrated science images)</td>
<td>Alert statistics & summaries</td>
</tr>
<tr>
<td></td>
<td>Template image</td>
<td>Object catalog (optimally measured properties)</td>
<td>Data quality analysis</td>
</tr>
<tr>
<td></td>
<td>Calibration image</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RGB JPEG Images</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data quality analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The known transient & variable sky

Figure by Mansi Kasliwal
Fast/faint transient sky still unknown

- Filled: Well observed
- Vertical Stripe: Rare
- Horizontal Stripe: Not yet detected
- Unfilled: Theoretical

Near-term facilities will begin to populate this space at bright end

adapted from Rau et al 2008
LSST étendue compared with other surveys
What does breadth/depth/width really give you?

- Characterization
- Known
- Rare
- Common
- Unknown
- Outlier Detection
- Clustering

Thursday, September 12, 2013
Even known variables & transients have surprises

Dwarf nova in the Kepler field
Even known variables & transients have surprises

Eccentric pulsating A star binary
Expected Rate of Transients

<table>
<thead>
<tr>
<th>Class</th>
<th>Mag</th>
<th>t (days)</th>
<th>Universal Rate</th>
<th>LSST Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous SNe</td>
<td>-19...-23</td>
<td>50 - 400</td>
<td>10^{-7} Mpc$^{-3}$ yr$^{-1}$</td>
<td>20000</td>
</tr>
<tr>
<td>Orphan Afterglows SHB</td>
<td>-14...-18</td>
<td>5 - 15</td>
<td>3×10^{-7}...-9 Mpc$^{-3}$ yr$^{-1}$</td>
<td>~10 - 100</td>
</tr>
<tr>
<td>Orphan Afterglows LSB</td>
<td>-22...-26</td>
<td>2 - 15</td>
<td>3×10^{-10}...-11 Mpc$^{-3}$ yr$^{-1}$</td>
<td>1000</td>
</tr>
<tr>
<td>On-axis GRB afterglows</td>
<td>...-37</td>
<td>1 - 15</td>
<td>10^{-11} Mpc$^{-3}$ yr$^{-1}$</td>
<td>~50</td>
</tr>
<tr>
<td>Tidal Disruption Flares</td>
<td>-15...-19</td>
<td>30 - 350</td>
<td>10^{-6} Mpc$^{-3}$ yr$^{-1}$</td>
<td>6000</td>
</tr>
<tr>
<td>Luminous Red Novae</td>
<td>-9...-13</td>
<td>20 - 60</td>
<td>10^{-13} yr$^{-1}$ Lsun$^{-1}$</td>
<td>80 - 3400</td>
</tr>
<tr>
<td>Fallback SNe</td>
<td>-4...-21</td>
<td>0.5 - 2</td>
<td>$<5 \times 10^{-6}$ Mpc$^{-3}$ yr$^{-1}$</td>
<td>< 800</td>
</tr>
<tr>
<td>SNe Ia</td>
<td>-17...-19.5</td>
<td>30 - 70</td>
<td>3×10^{-5} Mpc$^{-3}$ yr$^{-1}$</td>
<td>200000</td>
</tr>
<tr>
<td>SNe II</td>
<td>-15...-20</td>
<td>20 - 300</td>
<td>$(3.8) \times 10^{-5}$ Mpc$^{-3}$ yr$^{-1}$</td>
<td>100000</td>
</tr>
</tbody>
</table>

Table adapted from Rau et al. 2009
Variability on huge range of timescales

<table>
<thead>
<tr>
<th>Class</th>
<th>Timescale</th>
<th>Amplitude (Δmags)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD Pulsations</td>
<td>4-10 min</td>
<td>0.01 - 0.1</td>
</tr>
<tr>
<td>AM CVn (orbital period)</td>
<td>10-65 min</td>
<td>0.1 - 1</td>
</tr>
<tr>
<td>WD spin (int. polars)</td>
<td>20-60 min</td>
<td>0.02 - 0.4</td>
</tr>
<tr>
<td>AM CVn outbursts</td>
<td>1-5 days</td>
<td>2 - 5</td>
</tr>
<tr>
<td>Dwarf Novae outburst</td>
<td>4 days - 30 years</td>
<td>2 - 8</td>
</tr>
<tr>
<td>Symbiotic (outburst)</td>
<td>weeks-months</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Novae-like high/low</td>
<td>days-years</td>
<td>2 - 5</td>
</tr>
<tr>
<td>Recurrent Novae</td>
<td>10-20 year</td>
<td>6 - 11</td>
</tr>
<tr>
<td>Novae</td>
<td>10^3-10^4 yr</td>
<td>7 - 15</td>
</tr>
</tbody>
</table>
Questions/goals/projects within the Transients & Variable Star collaboration

Theoretical research on transients and variables, with eye towards follow-up observation strategy

Study of transients & variables in multiwaveband context, both to crossmatch w/ extant data & for future co-observing

What should the content of an alert be?

Precursor surveys, especially extending characterization/classification to new regimes
Understanding cadence choices for transient/variable identification

Provided multiband lightcurve templates to simulation team

Interest in making the OpSim a user-facing tool

Hsaio supernova template
Simulating the variable sky

<table>
<thead>
<tr>
<th>Variability Name</th>
<th>Responsible Party</th>
<th>Delivered</th>
<th>Implemented</th>
<th>Validated</th>
<th>Assigned</th>
<th>Typical LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRLy</td>
<td>Andy Becker (acbecker at gmail.com)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>![Typical LC image]</td>
</tr>
<tr>
<td>exotic SNe</td>
<td>Przemek Wozniak</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>![Typical LC image]</td>
</tr>
<tr>
<td>AM CVn</td>
<td>Josh Bloom</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>![Image:Amcvn.png]</td>
</tr>
<tr>
<td>Mira stars</td>
<td>Stephen Ridgeway</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>![Image:Mira.png]</td>
</tr>
<tr>
<td>Kilanova</td>
<td>Daniel Holz</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>![Image:Kilanova.png]</td>
</tr>
<tr>
<td>AGN</td>
<td>Simon Krughoff</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>![Image:Agn var.png]</td>
</tr>
<tr>
<td>M flares</td>
<td>Eric Hilton</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>![Image:Mflares.png]</td>
</tr>
<tr>
<td>Cepheids</td>
<td>Joseph Richards</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>![Image:Cepheid.png]</td>
</tr>
<tr>
<td>Classical Novae</td>
<td>Knox Long</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>![Image:Novae.png]</td>
</tr>
<tr>
<td>Micro Lensing</td>
<td>Rosanne DiStefano</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>![Image:Microlens.png]</td>
</tr>
</tbody>
</table>
“Follow up” means different things to different people

What is the latency of the required follow up?

60 sec makes rapid followup possible, but when is it necessary?

What is the intent?

Discrimination, detailed characterization?

What is the scope?

of objects, magnitude range, sky coverage, cadence
Spectroscopic resources are limited

Figure adapted from Adam Myers
Co-observing:
Contemporaneous observations of common fields

Multiple wavebands provide SED constraints
 e.g. radio (SKA), GW (LIGO), X-ray (LOFT, eROSITA), IR (Euclid)

Multiple potential contexts:
 Main survey, ToO, Deep Drilling Fields

Logistical issues require forethought

Programmatic: Target Updates
Data access/information sharing
Large scale collaboration/communication
Enabling unique science opportunities: joining the EM/GW Skies

LSST well-matched to localization of aLIGO events (e.g. talk by S. Nissanke)
Probing faint transients & variables

~0.01 mag precision photometry
Bright-end synergy with variables/transients from other efforts

Gaia variability at Launch+65m is close to LSST commissioning

Well-characterized sources provide a starting point for understanding LSST

How can we fold in available ancillary information? Perhaps provide some crossmatching with alerts?
Importance of context, characterization & classification

Prioritization is crucial!

Huge number of alerts for limited follow up resources

- Bright events - 4m class
- Faint 22-24 events - 10-30m

Must rely on rapid filtering of events, including using ancillary data
Characterization, classification act on multiple timescales

Roles of the classifier

Nightly products:
real-time classification, cross reference with contextual data

Aggregate products:
Classifier that acts on larger dataset

Filter actionable items from 30 Tb of data
Level 3 = YOU

Alert packets provide basic characterization, with goal of enabling alert triage - classification is not provided

Need to both improve on current classification, and to extend existing efforts to fainter regime

There is interest, but relatively little coordinated effort to create these tools (so far)
"It would be criminally negligent if our community squandered [this] opportunity."

- Rob Kennicutt
Rich opportunities, but significant challenges...

...now is the time to start strategizing!
Thanks!