Automated unsupervised search for unusual objects in large databases - the LSST perspective

J. Sánchez Almeida

Coll.:
C. Muñoz-Tuñón,
J. A. L. Aguerri,
Y. Ascasibar,
A. Morales-Luis,
D. Elmegreen,
B. Elmegreen,
A. de Vicente,
C. Allende,
...

Instituto de Astrofísica de Canarias, Spain
Unusual Objects: outliers in classifications of large databases

K-means automated classification algorithm

Example: eXtremely-Metal Poor (XMP) galaxies

Possible uses of k-means for LSST data handling and analysis

Conclusions
Rare objects are often extremely telling from a physical point of view (the XMP example will be detailed).

Any systematic search for such objects rely on some kind of classification of a large dataset, so that rare objects stick out as outliers of the classes.

Alternatively, you can set up a targeted classification ...

The dataset MUST be large, otherwise it would not contain unusual objects.

The classification of large datasets MUST be automated and, possibly, unsupervised.
If you can represent the objects of a dataset points in a high dimensional space, then k-means finds clusters of points in this space.

Pros:
- automated, unsupervised
- robust, a workhorse able to cope with most problems
- works in thousands of dimensions with millions of points
- easy to parallelize
- decides the cluster number
- cluster centers are physical objects
- probability of good assignation ... easy way to find outliers

Cons:
- random initialization implies no unique classification
- the inferred clusters may be slices of real clusters
- no physical interpretation given (may be seen as a Pro)
- ...
How does k-means work?

Example in two dimensions

step 1

class 1 class 2 class 3 class 4 class 5

step 2

step 3

step 4

step 5
Classification of all SDSS/DR7 spectroscopic galaxy catalog: ASK

Dataset: 1700 dimensions, 10^6 points
Outliers of the ASK classification

- noisy and mis-reduced spectra
- QSO
- wrong redshifts
- red galaxy with emission lines
- blue galaxy with unusual continuum
- double peak QSO
- green peas and relatives

Fig. 1. Spectra of several outliers. Bottom (red solid line): red galaxy with abnormal emission line. Middle (blue dotted line): emission line galaxy with a continuum that upturns both in the blue and in the red. Top (black dashed line): extremely red object with emission lines.

SA et al. 2013
Some uses of K-means

- Identifying problems in the automated reduction pipelines
- Pre-processing of large data sets (e.g., IFU spectra) so that similar data are interpreted the same way (SA+00,ApJ, 532, 1215)
- Others (e.g., morphological classification of galaxies ... never tried)
The Big-Bang just produces H and He (plus traces of Li, Be, and B).

Low metallicity targets (from the IGM to stars) are therefore primitive unevolved systems.

Many such unevolved galaxies are to be expected according to the ΛCDM paradigm.

\[\frac{Z}{Z_\odot} \geq 10^{-2} \text{ for all local galaxies (HII gas metallicity)} \]

Galaxies with \[10^{-1} \geq \frac{Z}{Z_\odot} \geq 10^{-2} \] are rare.
In view of the small number of XMP and on its potential interest, we carried out a systematic search for these galaxies in the SDSS-DR7 (the largest data release available at the starting time).

Morales-Luis et al. (2011)

Using k-means, we classify all SDSS-DR7 spectra in a narrow spectral region around Hα, whose shape is extremely sensitive to metallicity (e.g., Denicolo et al. 2002, Pettini & Pagel 2004)

In the end, we find only 32 targets out of the 10^6 DSSS galaxies - 0.01% of the galaxy with emission lines

Most of them (24/32) turn out to be cometary!
The spectrum decides de shape !!!
We do not know for sure yet ... but the best explanation available turns out to be both surprising and of far-reaching implications in galaxy formation.

Extensive follow up work has shown:
- XMP are disks, dynamically thick (Elmegreen et al. 12; SA et al. 13)
- They are surrounded large amounts of metal poor neutral HI gas ($M_{HI}/M_* \approx 20$; Filho et al. 13).
- The head of the comet is a giant HII region of low metallicity compared to the rest of the disk (SA et al. 13; 14).

* All this results combined suggest the **XMPs** to be disks in early stages of assembling with its star-formation sustained by direct accretion of external pristine gas.

* Such process, dubbed **cold-flow** accretion, is to be expected according to numerical simulations of galaxy formation (Dekel et al. 09), but they have not been observed are in local universe (Cresci et al. 10).

* Probably a **common phenomenon** in the local universe, ...
Possible uses of Kmeans for LSST data handling and analysis

Obvious Applications

- Identifying problems in the automated reduction pipelines. Many outliers are failures of the pipeline.
- Spectral classification from known (photometric) redshifts and the *ugrizy* magnitudes, including red dead galaxies, AGN selection.
- Discovery of unusual objects (as outliers of the spectral classification).
- Selection of class templates, for in-depth studies.
New Applications

- **Self-consistent** spectral classification and photometric-redshift determination. Never tried but: main factor affecting the 'observed' color is redshift. Nested k-means classifications needed.

 ![Flowchart](chart.png)

 - Input dataset, redshift and class
 - k-means redshifts
 - k-means spectral classes
 - Did redshift assignment changed?
 - yes
 - no
 - end

- **Morphological galaxy classification** based directly on the images. Never tried. Difficult.

- **Spectral-temporal classification** of the objects – the time represented by the first Fourier components?

- **Classification of transient events**, to decide which among the 10^6 transients alerts reported every night requires immediate attention (e.g., unknown event, flare, a nearby moving object, etc.)
Conclusions

★ **K-means** is a robust workhorse algorithm able to classify large astronomical datasets without a-priory knowledge of their physical properties.

★ **K-means** are works well with the present databases (e.g., SDSS).

★ **K-means** may be useful for the handling and data analysis of some LSST outcomes in various stages of reduction and archiving.
A tool to look for the needle in the haystack

Found It!!!

Congratulations, it only took you 65298 seconds