

Science Pipelines Overview

Yusra AlSayyad and the DRP team March 17 2020

How do we "best" combine multi-epoch imaging to extract the maximum information?

HSC-I COSMOS field (270s exposures)

Science Pipelines consists of 2 components: Prompt Products and Annual Data Release Production

Annual Data Release Products (DRP)

11 Data releases in 10 years.

Final catalog: 15PB Final pixels: 100PB

Prompt Data Products via nightly alert streams (Alert Production = AP)

~10 million alerts per night issued within 60 s of shutter close

The DRP and AP pipelines are constructed from the same algorithmic components

How do we know how well it works?

We say "HSC" frequently because the LSST Pipelines **are** the Hyper Suprime-Cam (HSC) Pipelines

Survey Comparison	LSST	HSC (Subaru Strategic Program)
Effective Aperture	6.5m	8.2m
Filters	ugrizy	grizy + narrow
Exposure time per visit	~30s	~240s
Field of View	10 deg² 3.5 deg diam	1.8 deg ² 1.5 deg diam
Num CCDs	189 (4k x 4k)	103 (4k x 2k)

How do we know how well it works?

- Real HSC Data Releases
- Month continuous integration
 - Track metrics through time and version.
 - DRP on 5 sq. deg. HSC and LSST ImSim (DESC DC2)
- Nightly continuous integration
 - DRP on patch/ccd scale HSC/CFHT, AP on DECam
- Inject fake sources

High level overview of the a Data Release Production

Includes DiaForcedSources

High level overview of the a Data Release Production

RubinObservatory

Jargon watch: Visits, CCDs, Exposures

Exposure: A software Object that contains an image plane, mask plane, variance plane, PSF model, WCS, photoCalib and visit metadata. Stored in FITS format

Single Visit Processing (as it works now) Image Characterization and Calibration

Single Visit Processing (as it works now) Image Characterization and Calibration

Single Visit Processing (as it works now) Image Characterization and Calibration: printout

RubinObservatory

RubinObservatory

Coaddition and Image Differencing

Jargon Watch! Tract, Patch HSC's skyMap:

SkyMap: a Software Object that defines a coadd's:

 WCS/Projection: TAN (gnomonic)

• Pixel Scale: ~Native

Tract Size: ~FOV

• Patch Size: ~CCD

Modular implementation makes it easy to swap projections and tessellations at runtime

Coaddition and Image Differencing

Coaddition and Image Differencing Procedure Hidden Slide for Printouts

Rubin Observatory

Multi-band and Multi-epoch Object Characterization

Multi-band and Multi-epoch Object Characterization

Multi-band and Multi-epoch Object Characterization (hidden slide for print out)

You (Avatars in #mtg-algorithms-workshop)

We asked you: "What aspects of the Science Pipelines Processing are you most interested in?"

←An unscientific coding

Also mentioned:

Templates Stellar motion **DCR** Coadd Artifact Rejection Coadd processing Brighter-Fatter

Some topics with interest **did not** make the cut for this workshop (beyond a brief mention)

- Software
- Data products
- Science Platform, Visualization
- Middleware
- Solar System Processing, moving objects processing
- Slow moving objects (Coaddition talk)
- Alerts
- Fake source injection
- Star Galaxy Separation
- Photo-z's (Galaxy Photometry talk)
- Dust Extinction
- Extended transients

- In talks that follow, we'll tell you:
 - Why is this component important and challenging?
 - What do we do now?
 - What are the limitations?
 - What are the plans for overcoming the limitations?
- We'd like:
 - To hear your lessons learned!
 - Your metrics. (i.e. will this support my science?)

More Information

- Data Products Definition Document (LSE-163): http://ls.st/dpdd
- Science Pipelines Design Document (LDM-151): http://ls.st/ldm-151
- Post questions at https://community.lsst.org/c/sci/data
- Post questions on LSSTC Slack if you're on Project or in a Science Collaboration
- Documentation and code: https://pipelines.lsst.io
- https://www.lsst.org/scientists/glossary-acronyms