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HSC Rubin

Observatory

112 2kx4k Hamamatsu 15 um CCDs (cf. 62 4kx4k LSST 10umCCDs)
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LSST Rubin
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(189 + 12) 4kx4k E2V/ITL 10 um CCDs
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bias subtracted
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Instrumental Signature Removal

Rubin

Observatory

Photons per second per pixel:

Flv) = hiVFy,iSﬂ“"Asgd(ae/au)(au/a;z)s;'(-"’ (4.1a)

Electrons per pixel

Ci= Zai-k Z Kij [Fjtexp + ep(F; texp)]:l [Z Kiy—j [Fjtexp + ep(F) texp)] | +
k j j

J

Ditqark + €p(Ditgark) (4.1b)
Electrons at the sense node: (n.b. C; and thus C] includes the Poisson noise)
Ci = ki(Cy) + [1 = k] (Ciy1) (4.1¢)
Voltage at the sense node (n.b. C! and thus U; includes the noise in C;):
Ui = Gsn(CY) (4.1d)
Digitized signal (n.b. U; includes the noise in C!):

J

I = Gu(Ge(D [0u + G ok + (G (Z[akj +cs][Us + B; + eN,j]> — Bi]) + &,] + B)))
l k
(4.1e)
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Instrumental Signature Removal
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Observatory
Photons per second per pixel:
1 i
Fl(v) = h—VF,,,iS“t'"ASé“’l(('?G/B'u)(Ou/a:z)Si""D (4.1a)
Electrons per pixel
C;= Zai'k Z[{i_j [FJ' texp + EP(FJ{texp)]] [Z Kj_; [FJ' texp + ep(F] texp)] +
k J J
Ditqark + €p(Ditgark) (4.1b)
Electrons at the sense node: (n.b. C; and thus C! includes the Poisson noise)
Ci= )+ [1 = £(Ciy1) (4.1¢)
Voltage at the sense node (n.b. C! and thus U; includes the noise in C}):
U: = Gsn(CY) (4.1d)
Digitized signal (n.b. U; includes the noise in C!):
= Gu(Ge(D_[0u+ )Gy (Z[M + il [Gr (Z[% +cxi][Uj + Bj +en J]) — Bi]) + 6] + B)
1 j
(4.1e)
It's complicated.
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Photons per second per pixel:

_ hiy F, ;5™ ASt (90 9u) (Du)0x) SEP (4.1a)

Electrons per pixel

Ci= Zai—k ZKi-j [FJ' texp + EP(F;texp)]:| [Z Ky [FJ' texp + ep(F] texp)]

k 7 J
Ditqark + €p(Ditgark) (4.1b)

Electrons at the sense node: (n.b. C; and thus C! includes the Poisson noise)

Ci= )+ [1 = £(Ciy1) (4.1¢)
Voltage at the sense node (n.b. C! and thus U; includes the noise in C}):
Digitized signal (n.b. U; includes the noise in C!):

= Gu(Ge(D_[0u+ )Gy (Z[M + il [Gr (Z[%‘ +ox][Uj + Bj + ﬁ\-:j]) — Bi]) + 6] + B)

l J

(4.1e)

It's complicated. And all these terms matter.
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Most of these corrections are standard

- i T & | iifiog of
ﬁ OEHEHG? Sciance



o Instrumental Signature Removal Rubin
P -4 Observatory

Most of these corrections are standard, but maybe a little tricky:
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Observatory

Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
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ﬁ Instrumental Signature Removal Rubin

Observatory

Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
— ... and some of the amps are pretty noisy
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“& Instrumental Signature Removal Rubin

Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
— ... and some of the amps are pretty noisy
— ... but the tree-rings and ragged-gate effects are weak
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Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
— ... and some of the amps are pretty noisy

— ... but the tree-rings and ragged-gate effects are weak
— Brighter-Fatter is as expected
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Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
— ... and some of the amps are pretty noisy

— ... but the tree-rings and ragged-gate effects are weak
— Brighter-Fatter is as expected
e Current correction techniques are not perfect
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Most of these corrections are standard, but maybe a little tricky:
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Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
— ... and some of the amps are pretty noisy

— ... but the tree-rings and ragged-gate effects are weak

— Brighter-Fatter is as expected
e Current correction techniques are not perfect

— There is some serial CTE, probably from traps in the serials. Parallel CTE features too
@ and maybe some tearing?

— The crosstalk appears to be a function of signal level
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Instrumental Signature Removal Rubin
Observatory

Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
— ... and some of the amps are pretty noisy
— ... but the tree-rings and ragged-gate effects are weak
— Brighter-Fatter is as expected
e Current correction techniques are not perfect

— There is some serial CTE, probably from traps in the serials. Parallel CTE features too
@ and maybe some tearing?

— The crosstalk appears to be a function of signal level
— The chips show thickness variations of up to c. 20 A (in silico)
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Instrumental Signature Removal Rubin
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Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
— ... and some of the amps are pretty noisy

— ... but the tree-rings and ragged-gate effects are weak

— Brighter-Fatter is as expected
e Current correction techniques are not perfect

— There is some serial CTE, probably from traps in the serials. Parallel CTE features too
@ and maybe some tearing?

— The crosstalk appears to be a function of signal level

— The chips show thickness variations of up to c. 20 A (in silico)
@ so the fringing may be fun
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Instrumental Signature Removal
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Most of these corrections are standard, but maybe a little tricky:

There is much more bias structure than you expect in these modern times
. and some of the amps are pretty noisy

... but the tree-rings and ragged-gate effects are weak

Brighter-Fatter is as expected
e Current correction techniques are not perfect

There is some serial CTE, probably from traps in the serials. Parallel CTE features too

@ and maybe some tearing?

The crosstalk appears to be a function of signal level

The chips show thickness variations of up to c. 20 A (in silico)
@ so the fringing may be fun

— 100um chips will show back-of-chip artefacts in bluer bands than HSC/DES (i.e. in z)
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Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
— ... and some of the amps are pretty noisy
— ... but the tree-rings and ragged-gate effects are weak
— Brighter-Fatter is as expected
e Current correction techniques are not perfect

— There is some serial CTE, probably from traps in the serials. Parallel CTE features too
@ and maybe some tearing?

— The crosstalk appears to be a function of signal level

— The chips show thickness variations of up to c. 20 A (in silico)
@ so the fringing may be fun

— 100um chips will show back-of-chip artefacts in bluer bands than HSC/DES (i.e. in z)
— | distrust all Analogue-to-Digital converters
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Most of these corrections are standard, but maybe a little tricky:
— There is much more bias structure than you expect in these modern times
— ... and some of the amps are pretty noisy
— ... but the tree-rings and ragged-gate effects are weak
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In Utopia our extra-terrestrial photons would be superimposed on a uniform background.
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In Utopia our extra-terrestrial photons would be superimposed on a uniform background. How
would that background appear in our data?
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In Utopia our extra-terrestrial photons would be superimposed on a uniform background. How
would that background appear in our data?
— Larger pixels would be brighter than small ones

e random variations in the mask set
e tree rings, edge (and median) distortions
e the Jacobian of the optical distortions (and tangent plane projection)
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An ldeal Universe Rubin
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In Utopia our extra-terrestrial photons would be superimposed on a uniform background. How
would that background appear in our data?

— Larger pixels would be brighter than small ones

e random variations in the mask set
e tree rings, edge (and median) distortions
e the Jacobian of the optical distortions (and tangent plane projection)

— More sensitive pixels will be brighter

e spatial variations in pixel QE
e spatial variations in the filters’

- bandpass
- central wavelength
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An ldeal Universe Rubin

Observatory

In Utopia our extra-terrestrial photons would be superimposed on a uniform background. How
would that background appear in our data?
— Larger pixels would be brighter than small ones

@ random variations in the mask set
e tree rings, edge (and median) distortions
e the Jacobian of the optical distortions (and tangent plane projection)

— More sensitive pixels will be brighter

e spatial variations in pixel QE
e spatial variations in the filters’

- bandpass
- central wavelength

— ghosts deliver extra light to some pixels
You may be thinking, "That’'s what a flatfield is for!"
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What's in a flat field?
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Pixel sensitivity

1.1 4
1.0 A
x 0.9 1
35
[
0.8 -
-—- Gae
— Soptical
0-7 T —— SCCd
Sb = Sae x Soptical X Sccd
0.6
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Focal plane position
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What's in a flat field? Rubin

Observatory

Dome lllumination

1.1 4

— -
e — -

10 e ——— % N A M A B — R S ——

Flux
o
(e}

0.8 A

-==1

e 14

-== 14+i4+Ap

—_— Fp=Sp, X (1+i+Ap)

0.7 1

0.6
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Focal plane position
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What's in a flat field?

Rubin

Observatory

Sky Illumination

1.1 A
——=~ -_———
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Sky2 Illlumination
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What's in a flat field? Rubin
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Flat Fields

1.1 4

1.0 -

0.7 1

0-6 1 1 1 1 1 1 1 1 1
-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00
Focal plane position
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What's in a flat field? Rubin
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DES g star flat (Bernstein et al.)

< @ciickcy I



Flatfielding Rubin

Observatory

. e ?'.': f .‘jﬂ.&

B -
ui III-IIII

lll.l’!
e |

2.17e+03 2.21e+03 2.25e+03 2. 3-e+03 2. 34e+03

HSC J; visit 1330 flatfielded using dome flats; 300s
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Flatfielding Rubin
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HSC i; visit 1328 ﬂatﬁelded using dome flats; 30s
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Flatfielding Rubin

Observatory

)
~

HSC g £7%; overscan, gain, QE, vignetting, Jacobian, corrected; Dome
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Flatfielding

HSC g £7%; overscan, gain, QE, vignetting, Jacobian, corrected; Sky
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Flatfielding Rubin

Observatory

HSC i =7%,; overscan, gain, QE, vignetting, Jacobian, corrected; Dome
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Flatfielding Rubin

). -4 Observatory

Unfortunately some of these effects manifest differently on sky and in flatfields.
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ﬁ Flatfielding Rubin

Unfortunately some of these effects manifest differently on sky and in flatfields. Some of this is
due to the HSC flatfield system and filters
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ﬁ Flatfielding Rubin

Unfortunately some of these effects manifest differently on sky and in flatfields. Some of this is
due to the HSC flatfield system and filters, but some of it is due to the different SEDs.
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& Flatfielding Rubin

Unfortunately some of these effects manifest differently on sky and in flatfields. Some of this is
due to the HSC flatfield system and filters, but some of it is due to the different SEDs.

There’s also a fundamental choice to be made: Do you correct the flux or the surface brightness?
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Flatfielding Rubin

Observatory

Unfortunately some of these effects manifest differently on sky and in flatfields. Some of this is
due to the HSC flatfield system and filters, but some of it is due to the different SEDs.

There’s also a fundamental choice to be made: Do you correct the flux or the surface brightness?

When measuring resolved objects you want the former; for background removal you want the
latter.

S ©enersy 77
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The usual way to estimate the sensitivity to resolved sources is to use Star Flats
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The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
large areas of imaging with suitable dithering.
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Star Flats
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Observatory

large areas of imaging with suitable dithering.

Flat Fields

1.1 -

0.7 A

- Pb, dome
- Pb, sky
..... Pb, sky2

Sae % Sccd

1.00

0.6 T T T T T
-1.00 -0.75 —-0.50 —-0.25 0.00

0.25 050 0.75

Focal plane position

The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
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Star Flats
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Observatory

large areas of imaging with suitable dithering.

Flat Fields

1.1 -

0.7 A

0.6 T T T T T
-1.00 -0.75 —-0.50 —-0.25 0.00

0.25 050 0.75 1.00

Focal plane position

The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
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The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
large areas of imaging with suitable dithering.

We will do this. But there is additional hardware to solve some of the other calibration problems
too:
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The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
large areas of imaging with suitable dithering.

We will do this. But there is additional hardware to solve some of the other calibration problems
too:

— The colour of the sky
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The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
large areas of imaging with suitable dithering.

We will do this. But there is additional hardware to solve some of the other calibration problems
too:

— The colour of the sky
— The optics’ spectral characteristics
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— The optics’ spectral characteristics
— The detector QE curves
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The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
large areas of imaging with suitable dithering.

We will do this. But there is additional hardware to solve some of the other calibration problems
too:

— The colour of the sky
— The optics’ spectral characteristics

— The detector QE curves
— The filter passbands
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The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
large areas of imaging with suitable dithering.

We will do this. But there is additional hardware to solve some of the other calibration problems
too:

— The colour of the sky
— The optics’ spectral characteristics

— The detector QE curves

— The filter passbands
@ and possible evolution thereof
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Star Flats Rubin

Observatory

The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
large areas of imaging with suitable dithering.

We will do this. But there is additional hardware to solve some of the other calibration problems
too:

— The colour of the sky
— The optics’ spectral characteristics

— The detector QE curves
— The filter passbands
@ and possible evolution thereof

Some of my enthusiastic friends would like to also measure the absolute throughput of the
system, but I’'m not paying for that.

ﬁa ©EenErcy U



Star Flats Rubin

Observatory

The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
large areas of imaging with suitable dithering.

We will do this. But there is additional hardware to solve some of the other calibration problems
too:

— The colour of the sky
— The optics’ spectral characteristics

— The detector QE curves

— The filter passbands
@ and possible evolution thereof

Some of my enthusiastic friends would like to also measure the absolute throughput of the
system, but I'm not paying for that. We plan to initially tie our per-band zero points to CALSPEC
standards (basically dA white dwarfs observed by HST).
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Star Flats Rubin

Observatory

The usual way to estimate the sensitivity to resolved sources is to use Star Flats, or equivalently
large areas of imaging with suitable dithering.

We will do this. But there is additional hardware to solve some of the other calibration problems
too:

— The colour of the sky
— The optics’ spectral characteristics

— The detector QE curves

— The filter passbands
@ and possible evolution thereof
Some of my enthusiastic friends would like to also measure the absolute throughput of the
system, but I'm not paying for that. We plan to initially tie our per-band zero points to CALSPEC

standards (basically dA white dwarfs observed by HST). That should put our fluxes on an
absolute (Jy) scale to c. 1%, and it's easier than Pt furnaces or NIST photodiodes.
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Flatfielding in LSST
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Flatfielding in LSST Rubin
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Flatfielding in LSST Rubin

Observatory

At the Rubin Observatory we’ll have a flatfield screen.
And a class IV tunable laser.

l.e. we can measure a set of monochromatic (dome) flats.
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Flatfielding in LSST; the CBP Rubin

Observatory

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
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Flatfielding in LSST; the CBP Rubin

Observatory

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
— Ghost: deterministic unwanted light due to partial transmission and reflection of light at
optical surfaces
— Ghoul: unwanted light that ray-tracing codes cannot predict, e.qg. scattering off baffles

Ghost Ghoul
o @ engRey I



Flatfielding in LSST; the CBP Rubin

Observatory

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
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Flatfielding in LSST; the CBP Rubin

Observatory

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
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Observatory

ﬁ Flatfielding in LSST; the CBP Rubin

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
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Observatory

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
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ﬁ Flatfielding in LSST; the CBP Rubin

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
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Flatfielding in LSST; the CBP Rubin
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We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.

! i T & | iifiog of
o ©enNercY I
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We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
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Flatfielding in LSST; the CBP Rubin

Observatory

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
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Flatfielding in LSST; the CBP

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,

the CBP.
1.1 1
> W\

bad
>
[
0.8 A
0.7 - ® CBpP, — fit(Fp/fit(CBPp))
' fit(CBPp) ——  Fulfit(Fulfit(CBPy))
— Fp/fit(CBPy)
0-6 T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Focal plane position
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Observatory

ﬁ Flatfielding in LSST; the CBP Rubin

We'll also be able to separate direct from ghost/ghoul light using the Collimated Beam Projector,
the CBP.
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 1dina Rubin
ﬁ Flatfielding in LSST et

Together these allow us to synthesise a flat field for any SED, which will correctly recover either:
— Object Flux or
— Surface Brightness
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 1dina Rubin
ﬁ Flatfielding in LSST et

Together these allow us to synthesise a flat field for any SED, which will correctly recover either:
— Object Flux or
— Surface Brightness

We plan to:
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alding i Rubin
_“& Flatfielding in LSST !

Together these allow us to synthesise a flat field for any SED, which will correctly recover either:
— Object Flux or
— Surface Brightness

We plan to:
— Flatfield the sky’s surface brightess, using its known SED (allowing for moon and airglow)
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alding i Rubin
_“& Flatfielding in LSST !

Together these allow us to synthesise a flat field for any SED, which will correctly recover either:
— Object Flux or
— Surface Brightness

We plan to:
— Flatfield the sky’s surface brightess, using its known SED (allowing for moon and airglow)
— Subtract the sky
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alding i Rubin
_‘& Flatfielding in LSST Lt b

Together these allow us to synthesise a flat field for any SED, which will correctly recover either:
— Object Flux or
— Surface Brightness

We plan to:
— Flatfield the sky’s surface brightess, using its known SED (allowing for moon and airglow)
— Subtract the sky
— Correct the flatfield to give the object-flux for a flat vF,, SED
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Flatfielding in LSST Rubin

Observatory

Together these allow us to synthesise a flat field for any SED, which will correctly recover either:
— Object Flux or
— Surface Brightness

We plan to:
— Flatfield the sky’s surface brightess, using its known SED (allowing for moon and airglow)
— Subtract the sky
— Correct the flatfield to give the object-flux for a flat vF, SED

So we should be in good shape to calibrate the sky and objects once we know their SED.
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Flatfielding in LSST Rubin

Observatory

Together these allow us to synthesise a flat field for any SED, which will correctly recover either:
— Object Flux or
— Surface Brightness

We plan to:
— Flatfield the sky’s surface brightess, using its known SED (allowing for moon and airglow)
— Subtract the sky
— Correct the flatfield to give the object-flux for a flat vF, SED

So we should be in good shape to calibrate the sky and objects once we know their SED. For flat
fielding the sky we don’t need to know the SED all that well
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Flatfielding in LSST Rubin

Observatory

Together these allow us to synthesise a flat field for any SED, which will correctly recover either:
— Object Flux or
— Surface Brightness

We plan to:
— Flatfield the sky’s surface brightess, using its known SED (allowing for moon and airglow)
— Subtract the sky
— Correct the flatfield to give the object-flux for a flat vF, SED

So we should be in good shape to calibrate the sky and objects once we know their SED. For flat
fielding the sky we don’t need to know the SED all that well; but for precision cosmology we do.
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Flatfielding in LSST Rubin

Observatory

Together these allow us to synthesise a flat field for any SED, which will correctly recover either:
— Object Flux or
— Surface Brightness

We plan to:

— Flatfield the sky’s surface brightess, using its known SED (allowing for moon and airglow)
— Subtract the sky

— Correct the flatfield to give the object-flux for a flat vF, SED

So we should be in good shape to calibrate the sky and objects once we know their SED. For flat
fielding the sky we don’t need to know the SED all that well; but for precision cosmology we do.

Enter the Auxiliary Telescope.
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AuxTel Rubin

Observatory

A 1.2m telescope
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AuxTel Rubin

Observatory

A 1.2m telescope with a slitless spectrograph
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AuxTel Rubin

Observatory

A 1.2m telescope with a slitless spectrograph to monitor the atmospheric transmission.
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HD 107696 Rubin

Observatory

{'dayObs': '2020-01-28', 'seqNum': 335}
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HD 107696 Rubin

Observatory
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Observing strategy last dark run.

AuxTel observing strateqgy

Rubin

Observatory
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Rubin
ﬁ AuxTel Observatory

Eli Ryckoff will talk about the atmospheric transmission and the extent to which it can be
corrected without using the auxTel.
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Rubin
__& AUXTeI Observatory

Eli Ryckoff will talk about the atmospheric transmission and the extent to which it can be

corrected without using the auxTel.
Whether or not we need it to reduce the stellar photometry, we will be able to probe the

variation of the components of atmospheric absorption as a function of time, azimuth, and
altitude.
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AuxTel Rubin

Observatory

Eli Ryckoff will talk about the atmospheric transmission and the extent to which it can be
corrected without using the auxTel.

Whether or not we need it to reduce the stellar photometry, we will be able to probe the
variation of the components of atmospheric absorption as a function of time, azimuth, and
altitude. With the intention of reducing all Rubin IsstCam photometry to a common atmosphere
and airmass, allowing for the source’s SED.
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Rubin

Observatory

The End
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AuxTel Rubin

Observatory

A Condor over Cerro Pachén
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AuxTel Rubin

Observatory

A Condor over Cerro Pachdn
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