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What is Photometric Calibration? oleé'rPaiﬂy

« ISR will convert ADU (DN) to photons (see Robert’s talk)

- Background/Sky correction will discard sky photons and leave source photons
(see Yusra’s talk)

- Photometric calibration converts source photons to nanolansky for broadband
filters

- Answering “how bright is this object in physical units”, e.qg.
1Jy =1026 W m-2 Hz!

- (Well, actually ...)
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Everything is Relative oleé'rE.EQy

« Measuring absolute fluxes is really quite difficult
- An STSci meeting on this topic was postponed to a later date

* Most of our measurements are relative to something else

« Currently, we use CALSPEC spectrophotometric standards measured by the
Hubble Space Telescope

« Above the atmosphere; quality instrument; issues at percent level?
- Depends on dA white dwarf models and/or precision spectrophotometry

- Absolute calibration is not the subject of this talk
+ We can get to a nly-like scaling.
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Some Terminology Rubin

Observatory

- A “filter” is an optical element that selects a specific frequency range
- A filter + the instrument + the atmosphere defines a “passband” or “band”

- A “gray correction” is an achromatic adjustment that affects all all frequencies /
bands equally

« Clouds are assumed to be “gray”. But they are not spatially constant!
« Dust accumulation on mirrors/lenses is also (probably) gray.

« A “chromatic correction” depends on the object spectral energy distribution
(SED)

« Most everything depends on SED
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Types of Calibration Errors oleé'rEEQy

- Stability/Repeatability

- If you return to an object later, do you get the same calibrated “top-of-
atmosphere” flux?

« Uniformity

- If you go to a different part of the survey, and look at a star with the same
SED/distance, do you get the same calibrated flux?

 Chromatic

- If you compare stars of different colors, do you get a consistent ADU — flux
transfer?
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The Modeling Chain

Rubin

Observatory
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Computing Calibrated Flux Rubin

Observatory

« The number of ADU detected by the CCD depends on the size of the telescope,

the “observed” passband, and the spectral energy distribution (SED) of the
source

- We then have to integrate all the photons that hit the detector:

Observed passband

A AT 00 d
ADU, = — x / dt X / @ K Sy(x,y,alt,az,t, \Dx A
g 0 0 hpi A

Source SED
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Computing Calibrated Flux oleé'rPaiﬂy

- It is convenient to measure relative to the "AB system”
« Flat-spectrum in Fv(A) (Fukugita et al. (1996)):
AB, = —25log, F (ergs'cm™?Hz™ ') - 48.6

- We then define the observed “top-of-atmosphere” magnitude relative to the AB
system:

[T F (X)) x SpP(A) x A‘ld)\>

obs __
— 251 _
" V510 ( [ FAB X 595 (A) x A-TdA
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Computing Calibrated Flux oBs‘é'rPaiﬂy

« One of our goals is to convert an observed magnitude (with a passband that
varies with time and position) to a standard magnitude (so that the SNe and
photo-z folks don’t have to worry about all the unique passbands in the survey)

- See Burke, Rykoff et al. (2018) for details

574 = mi — i = 2518, (154 (0)/13(0))
[T EF (X)) x SpPs(A) x AtdA
[T F(A) x S5P(X) x A—tdA

+2.51ogg (

5% () = /O OBS (AT

Rubin Observatory Algorithms Workshop | Zoom-land | March 17 - 19, 2020 9



Choose Your Standard Wisely oBs‘é'rPaiﬂy

- If either the SED is the flat AB spectrum or the observed passband is the
standard passband, the chromatic correction is 0.

- The further the passbands diverge, the greater impact of different SEDs

 Particular challenges include CCD quantum-efficiency (E2V and ITL chips) and
water vapor variations
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o 1750 1
2

« Choose a standard passband as close to
the “typical” observing conditions as
possible

® 750

=
€ 500
o
-

250

(e T T T T T T
0 5 10 15 0.02 0.04 0.06

PV {mm) Lasker+19

Rubin Observatory Algorithms Workshop | Zoom-land | March 17 - 19, 2020 10



The Atmosphere

Rubin

Observatory

- The atmosphere is not clear ... pesky molecules which give us air to breath and

water to drink

« Choose a “standard atmosphere”
to be as close to typical conditions
as possible
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The LSST Filters

Rubin

Observatory

« These are the nominal LSST filters
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The LSST Passbands oleé'rEEﬂy

« These are the nominal LSST passbands (filter + mirror + lenses + ccds + atm)
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Impact of the Atmosphere oleé'rEEﬂy

* Here is the z-band (filter + instrument)

z-band, No Atmosphere
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Impact of the Atmosphere oleé'rEEﬂy

- If we add the atmosphere with a touch of water

z-band, Low PWV
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Impact of the Atmosphere oleé'rEEﬂy

- If we add the atmosphere with a lot of water

z-band, High PWV
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Impact of the Atmosphere oleé'rEEﬂy

- And we overlay the two — water vapor cuts out red end of z band (and blue end
of y band)

z-band, High PWV
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Impact of the Atmosphere

Rubin

Observatory

* Primary impact is the change in the overall throughput (transparency)

- To predict the total throughput at mmag level, we need to know PWV at the

~(0.2 mm level

LSST z band, airmass = 1.2
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Impact of the Atmosphere oleé'rEEﬂy

- Secondary impact is the chromatic effect. Mostly the red end of the z band is
removed!

+ Size of impact depends on the SED
* For SNe, need to know PWV at ~1 mm level
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Modeling the Atmosphere Rubin

Observatory

- AuxTel will observe stars around the sky with low-resolution Ronchi grating (see
Robert’s talk)

- Remove the star, fit the atmosphere

« Goal is to transform atmosphere to the standard (not necessarily know the
individual components)

« Self-calibration via the

- Solve the global calibration problem with a physical model of the atmosphere
+ instrument

« Picking up on Stubbs & Tonry (2006)
- See Burke, Rykoff et al. (2018)
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FGCM in a Nutshell oleé'rEEQy

- Any variation in the atmosphere that has an observable effect ... has an
observable effect

- This is the key to self-calibration

- Given a set of atmospheric parameters at any given time (under photometric
conditions) we can predict the atmospheric extinction as a function of
wavelength

« Also need to know object SED (see e.qg., Li et al. 2016)

* Once we know the atmospheric extinction, can predict fluxes of all the objects in
an exposure

- Works for “photometric observations” — those that are consistent with the
atmosphere model
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Advantages of FGCM oleé'rPaiﬂy

- Forward model approach always leads to physically possible solutions
« Allows physically-motivated non-linearities with airmass
* No gray terms in the model means no runaway solutions

« Uses full range of star colors — increase the s/n and this is useful information!

- Instrumental transmission variations, plus possible evolution of passbands is
properly incorporated

« Works best with more overlap in time and space (like Gbercal), and multiple
bands per night is very useful
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The FGCM Atmosphere Model oleé'rEEQy

- Use MODTRAN for atmospheric modeling

- Goal is to get things to a standard, not necessarily to delve into the
atmospheric physics

« The FGCM parameters
« Precipitable Water Vapor (PWV)
« Aerosol Optical Depth (AOD) normalization and slope
* Ozone

« Given zenith distance and barometric pressure, we can additionally compute 02
and Rayleigh scattering from MODTRAN
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Datasets oleé'rPa!ﬂy

* FGCM has been run on DES Years 1-3 (“Y3"”) and DES Years 1-6 (“Y6")
- Burke, Rykoff et al. (2018), and Rykoff, Burke et al. (in prep)

« FGCM has also been run on HSC PDR2 data (via https://github.com/Isst/
fgcmcal)
« Currently running on HSC S20a processing
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Testing PWV L

* For the first 4 years of DES, we had GPS measurements* of water vapor (not
used in FGCM fit)

« There is good correlation per exposure Model PWV Per z-band Exposure

* Note that we do not care about the PWV
for gri

- Good agreement in Y band as well (but
noisier since the DES Y band is quite
narrow)

PWV from Model (mm)

« *You can use GPS timing information
to estimate the total water vapor in the
atmosphere, by looking at the signal
delay between different satellites

PWV from GPS (mm)
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Testing PWV: The "Lupton Dream” oBs‘é'rPafﬂy

- Can we use the relative change in colors of red and blue stars at different levels
of PWV to measure the PWV per exposure?

* Yes we can! Even in non-photometric Model PWV Per z-band Exposure
conditions!

Stellar SEDs

PWV Retrieved (mm)

1 e la SEDs (range of redshift

1 2 3 4 5 6 71 8
PWV

PWV from GPS (mm)
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Temporal Variations in the Chromatic Passband oBs‘é'rEEQy

- In DES we looked at 6 years of chromaticity residuals

- Compare residuals of red stars to
blue stars per exposure

- This is molecular degradation of the
mirror surface

« No amount of washing can clean
this

- Leads to a several mmag residual
in the g-band over 5 years
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Temporal Variations in HSC Reflectivity Rubin

Observatory

- Plot the raw comparison between observed (uncorrected) magnitudes and PS1
magnitudes

- Reference stars are not required for 100 il .
FGCM fit, but can be used

« Over several years, a ~50% reduction
in throughput before recoating (!)

« A period of several months with a more
rapid decline (seen in all bands)

« Corresponds with increased activity
from Kilauea

- Impact of “vog” (volcanic fog)?
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FGCM Can Measure Illumination Corrections OBSE'PJQV

- A “star flat” normalizes the response of the instrument to focused light
- Plots are after removing pixel area variation as predicted by WCS
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FGCM Can Test Throughput Measurements

Rubin

Observatory
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FGCM Can Test Throughput Measurements

Rubin

Observatory
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FGCM Can Test Throughput Measurements

Rubin

Observatory
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- Residuals are due to varying QE (typically AR
coating in g band)
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FGCM Can Test Throughput Measurements

Rubin

Observatory
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* There is azimuthal dependence of filter
throughput

- Seen in filter scans, not supported in stack yet
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FGCM Repeatability (DES Y6) Rubin

- 2-4 mmag repeatability for most bands / colors
« Worst for reddest stars in g-band (unmodeled chromatic corrections)
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FGCM Uniformity (DES Y6) Rubin

« Compare to Gaia GDR2
« Synthesize Gaia G using (weighted) g+r+i+z
« Consistency at 2.1 mmag
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FGCM Uniformity (HSC PDR2) Rubin

- Run without reference stars, 3.0 mmag uniformity
« Enough observations of deep fields to tie separated wide fields together
- Thankfully, LSST will not observe like this...

0=0.0030 450

{120
Ggaia — GpredlrHsc) b, s ! L]
[ o
2 -0.006 0,000 0.006 490 ¢
© L L | <
£ — °
F 2
. - © agma e / \ £
\ \ | - ] A 1 i L 160 o
135° 90° 45° 0 —-45° -90° -135° -180° =

Right Ascension
\
430

-~

. . . )
-0.006 -0.003 0.000 0.003 0.006
Ggaia — Gpred(risc)

Rubin Observatory Algorithms Workshop | Zoom-land | March 17 - 19, 2020 36



Wait ... What are we calibrating? oleé'rEEQy

 Traditionally use a largish (12 pixel radius for HSC) aperture for calibrations

- These are correct for “fluence” images (number of photons incident on the
pixel) vs a surface brightness image (differ by a factor of pixel area)

* Not all the flux from the stars falls into this aperture!

- What are the implications? How do we correct for this?

« Aperture corrections!
« Unfortunately, this is not a uniquely defined concept...
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“Aperture Corrections” (Of the First Kind) oleé'rEEﬂy

- Our best stellar and galaxy photometry is based on PSF-convolved fluxes

* The PSF extends to infinity...

N e DES PSF wings
- Should we correct our aperture fluxes to —
- . . ? ~N
infinity- B )
wn
t
©
« Could use a curve-of-growth... o °
IEI 15 A
- This is very difficult and very noisy to =
compute how it varies on short spatial .
and temporal scales! 107 10° 1ot 102 103
r [arcsec]
Zhang+19
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“Aperture Corrections” (Of the Second Kind) oleé'rEEQy

« But all our measurements are relative!

- If we measure our primary calibration stars (e.g. CALSPEC) with the same 12
pixel aperture we only need to know the flux within this aperture

- So we empirically compute an “aperture correction map” to convert PSF/
Cmodel/etc fluxes to the same normalization as our calibration fluxes for well-
measured stars

- This accomplishes the same goal as the curve-of-growth but avoids pesky
infinities

- Note that these aperture correction maps are applied to all stack coadd
quantities that rely on PSF models!
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“Aperture Corrections” (Of the Second Kind) oleé'rEEﬂy

- Summarize the full focal-plane difference between PSF and aper mags on a
single HSC image

aperbright: PSF Stars, visit 35870 (HSC-I), eps = -234.34
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“Aperture Corrections” (Of the Second Kind) oleé'rEEﬂy

« We must be careful in how we compute the aperture correction map
- If we do not get background correct, all stars should not be equally weighted

default: PSF Stars, visit 35870 (HSC-I), eps = -214.63 aperbright: PSF Stars, visit 35870 (HSC-1), eps = -238.74
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“Aperture Corrections” (Of the Second Kind) oleé'rPaEﬂy

« Is this method optimal?
* No.

- I believe we know more about the PSF variations (as imperfect as this
knowledge is) than to rely on fully empirical corrections

- We plan on exploring this further
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“Aperture Corrections” (Of the Third Kind) oleé'rEEﬂy

« We calibrate with a 12 pixel (2.4” radius) aperture ...

« As the wings of PSF change then more light will go into and out of this aperture.

_ N :-:.-..—..-.,,,\ DES PSF wings
« The FGCM model must account for this. — }
- See also Bernstein et al. (2018), and 'g 5
Gary’s talk from this morning S
G 54
(@)}
©
IEI 15 A
3
r [arcsec]
Zhang+19
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“Aperture Corrections” (Of the Third Kind) oBsErEEQy

« Compute median of mag in 17 pix aper - 12 pix aper 20
* Photometric residual is strongly correlated! 5 1
. A\ . ” g 0
* Primary source of apparent “non-photometricity E
S -10
+ This can be modeled! g,
In summary, we find that all of the deviations above ~30
~1 mmag rms from a static response function plus secant 2o ooos 0030 ooan oo oo
airmass law on short timescales are plausibly attributable to ExpSeeingVariable
spatial /temporal variations in aperture corrections. The A, 20

statistic measured from bright stars is an accurate predictor of
these aperture corrections, so on a typical half-hour stretch of
clear-sky observations we can homogenize the exposure
zeropoints to ~1 mmag, and if we have sufficient stellar data
in an exposure to map out variation of A; across the FOV, we
could reduce any intra-exposure inhomogeneity to similar

level. 0.02 0.03 0.04 0.05

EXP9? (mmag)
0
o

ExpSeeingVariable
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. Rubin
Conclusions Obs‘é'rlvjatory

- In order to get calibrations to the 5 mmag level (project) or 1 mmag level
(DESC) requirements we must know

« Instrumental throughput (CBP)
- Atmosphere (AuxTel / FGCM)
« Throughput variations (FGCM)

- In DES we are <5 mmag
- Without using external reference catalogs

+ Gets easier with more overlap in space and time (yay LSST!)

- Aperture corrections and PSF modeling remain issues!
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