

What is Photometric Calibration?

- ISR will convert ADU (DN) to photons (see Robert's talk)
- Background/Sky correction will discard sky photons and leave source photons (see Yusra's talk)
- Photometric calibration converts source photons to nanoJansky for broadband filters
 - Answering "how bright is this object in physical units", e.g. $1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$
 - (Well, actually ...)

Everything is Relative

- Measuring absolute fluxes is really quite difficult
 - An STSci meeting on this topic was postponed to a later date
- Most of our measurements are relative to something else
- Currently, we use CALSPEC spectrophotometric standards measured by the Hubble Space Telescope
 - Above the atmosphere; quality instrument; issues at percent level?
 - Depends on dA white dwarf models and/or precision spectrophotometry
- Absolute calibration is not the subject of this talk
 - We can get to a nJy-like scaling.

Some Terminology

- A "filter" is an optical element that selects a specific frequency range
 - A filter + the instrument + the atmosphere defines a "passband" or "band"
- A "gray correction" is an achromatic adjustment that affects all all frequencies / bands equally
 - Clouds are assumed to be "gray". But they are not spatially constant!
 - Dust accumulation on mirrors/lenses is also (probably) gray.
- A "chromatic correction" depends on the object spectral energy distribution (SED)
 - Most everything depends on SED

Types of Calibration Errors

- Stability/Repeatability
 - If you return to an object later, do you get the same calibrated "top-ofatmosphere" flux?
- Uniformity
 - If you go to a different part of the survey, and look at a star with the same SED/distance, do you get the same calibrated flux?
- Chromatic
 - If you compare stars of different colors, do you get a consistent ADU → flux transfer?

The Modeling Chain

Computing Calibrated Flux

- The number of ADU detected by the CCD depends on the size of the telescope, the "observed" passband, and the spectral energy distribution (SED) of the source
- We then have to integrate all the photons that hit the detector:

$$\mathrm{ADU}_b = \frac{A}{g} \times \int_0^{\Delta T} dt \times \int_0^{\infty} F_{\nu}(\lambda) \underbrace{S_b(x,y,\mathrm{alt,az},t,\lambda)}_{\text{Source SED}} \times \frac{d\lambda}{h_{Pl}\lambda}$$

Computing Calibrated Flux

- It is convenient to measure relative to the "AB system"
 - Flat-spectrum in $F_v(\lambda)$ (Fukugita et al. (1996)):

$$AB_{\nu} \equiv -2.5 \log_{10} F_{\nu} (\text{erg s}^{-1} \text{ cm}^{-2} \text{Hz}^{-1}) - 48.6$$

 We then define the observed "top-of-atmosphere" magnitude relative to the AB system:

$$m_b^{\text{obs}} \equiv -2.5 \log_{10} \left(\frac{\int_0^\infty F_{\nu}(\lambda) \times S_b^{\text{obs}}(\lambda) \times \lambda^{-1} d\lambda}{\int_0^\infty F^{\text{AB}} \times S_b^{\text{obs}}(\lambda) \times \lambda^{-1} d\lambda} \right)$$

Computing Calibrated Flux

- One of our goals is to convert an observed magnitude (with a passband that varies with time and position) to a standard magnitude (so that the SNe and photo-z folks don't have to worry about all the unique passbands in the survey)
- See Burke, Rykoff et al. (2018) for details

$$\delta_b^{\text{std}} \equiv m_b^{\text{std}} - m_b^{\text{obs}} = 2.5 \log_{10}(\mathbb{I}_0^{\text{std}}(b)/\mathbb{I}_0^{\text{obs}}(b))$$
$$+2.5 \log_{10} \left(\frac{\int_0^\infty F_{\nu}(\lambda) \times S_b^{\text{obs}}(\lambda) \times \lambda^{-1} d\lambda}{\int_0^\infty F_{\nu}(\lambda) \times S_b^{\text{std}}(\lambda) \times \lambda^{-1} d\lambda} \right)$$

$$\mathbb{I}_0^{\text{obs}}(b) \equiv \int_0^\infty S_b^{\text{obs}}(\lambda) \lambda^{-1} d\lambda$$

Choose Your Standard Wisely

- If either the SED is the flat AB spectrum or the observed passband is the standard passband, the chromatic correction is 0.
- The further the passbands diverge, the greater impact of different SEDs
 - Particular challenges include CCD quantum-efficiency (E2V and ITL chips) and water vapor variations
- Choose a standard passband as close to the "typical" observing conditions as possible

The Atmosphere

 The atmosphere is not clear ... pesky molecules which give us air to breath and water to drink

Choose a "standard atmosphere"

to be as close to typical conditions as possible

The LSST Filters

These are the nominal LSST filters

The LSST Passbands

These are the nominal LSST passbands (filter + mirror + lenses + ccds + atm)

Here is the z-band (filter + instrument)

• If we add the atmosphere with a touch of water

If we add the atmosphere with a lot of water

• And we overlay the two — water vapor cuts out red end of z band (and blue end

of y band)

- Primary impact is the change in the overall throughput (transparency)
- To predict the total throughput at mmag level, we need to know PWV at the ~0.2 mm level
- This is degenerate with with any gray/opacity measurements so is not critical

- Secondary impact is the chromatic effect. Mostly the red end of the z band is removed!
- Size of impact depends on the SED
- For SNe, need to know PWV at ~1 mm level

Modeling the Atmosphere

- AuxTel will observe stars around the sky with low-resolution Ronchi grating (see Robert's talk)
 - Remove the star, fit the atmosphere
 - Goal is to transform atmosphere to the standard (not necessarily know the individual components)
- Self-calibration via the Forward Global Calibration Method (FGCM)
 - Solve the global calibration problem with a physical model of the atmosphere + instrument
 - Picking up on Stubbs & Tonry (2006)
 - See Burke, Rykoff et al. (2018)

FGCM in a Nutshell

- Any variation in the atmosphere that has an observable effect ... has an observable effect
 - This is the key to self-calibration
- Given a set of atmospheric parameters at any given time (under photometric conditions) we can predict the atmospheric extinction as a function of wavelength
 - Also need to know object SED (see e.g., Li et al. 2016)
- Once we know the atmospheric extinction, can predict fluxes of all the objects in an exposure
- Works for "photometric observations" those that are consistent with the atmosphere model

Advantages of FGCM

- Forward model approach always leads to physically possible solutions
 - Allows physically-motivated non-linearities with airmass
 - No gray terms in the model means no runaway solutions
- Uses full range of star colors increase the s/n and this is useful information!
- Instrumental transmission variations, plus possible evolution of passbands is properly incorporated
- Works best with more overlap in time and space (like übercal), and multiple bands per night is very useful

The FGCM Atmosphere Model

- Use MODTRAN for atmospheric modeling
 - Goal is to get things to a standard, not necessarily to delve into the atmospheric physics
- The FGCM parameters
 - Precipitable Water Vapor (PWV)
 - Aerosol Optical Depth (AOD) normalization and slope
 - Ozone
- Given zenith distance and barometric pressure, we can additionally compute O2 and Rayleigh scattering from MODTRAN

Datasets

- FGCM has been run on DES Years 1-3 ("Y3") and DES Years 1-6 ("Y6")
 - Burke, Rykoff et al. (2018), and Rykoff, Burke et al. (in prep)
- FGCM has also been run on HSC PDR2 data (via https://github.com/lsst/fgcmcal)
 - Currently running on HSC S20a processing

Testing PWV

- For the first 4 years of DES, we had GPS measurements* of water vapor (not used in FGCM fit)
- There is good correlation per exposure
- Note that we do not care about the PWV for gri
- Good agreement in Y band as well (but noisier since the DES Y band is quite narrow)
- *You can use GPS timing information to estimate the total water vapor in the atmosphere, by looking at the signal delay between different satellites

Testing PWV: The "Lupton Dream"

- Can we use the relative change in colors of red and blue stars at different levels of PWV to measure the PWV per exposure?
- Yes we can! Even in non-photometric conditions!

Temporal Variations in the Chromatic Passband

- In DES we looked at 6 years of chromaticity residuals
- Compare residuals of red stars to blue stars per exposure
- This is molecular degradation of the mirror surface
 - No amount of washing can clean this
 - Leads to a several mmag residual in the g-band over 5 years

Temporal Variations in HSC Reflectivity

- Plot the raw comparison between observed (uncorrected) magnitudes and PS1 magnitudes
 - Reference stars are not required for FGCM fit, but can be used
- Over several years, a ~50% reduction in throughput before recoating (!)
- A period of several months with a more rapid decline (seen in all bands)
 - Corresponds with increased activity from Kilauea
 - Impact of "vog" (volcanic fog)?

FGCM Can Measure Illumination Corrections

- A "star flat" normalizes the response of the instrument to focused light
 - Plots are after removing pixel area variation as predicted by WCS

- Units are chromatic shift from blue to red stars
- Residuals are due to varying QE (typically AR coating in g band)

DES g-band

19.6

9.8

0.0

Units are chromatic shift from blue to red stars

Residuals are due to varying QE (typically AR coating in g band)

Chromatic Residual red-blue stars (mmag)

- Units are chromatic shift from blue to red stars
- Residuals are due to varying QE (typically AR coating in g band)

HSC g-band

- Units are chromatic shift from blue to red stars
- There is azimuthal dependence of filter throughput
 - Seen in filter scans, not supported in stack yet

HSC r2-band

FGCM Repeatability (DES Y6)

- 2-4 mmag repeatability for most bands / colors
 - Worst for reddest stars in g-band (unmodeled chromatic corrections)

FGCM Uniformity (DES Y6)

- Compare to Gaia GDR2
 - Synthesize Gaia G using (weighted) g+r+i+z
- Consistency at 2.1 mmag

FGCM Uniformity (HSC PDR2)

- Run without reference stars, 3.0 mmag uniformity
- Enough observations of deep fields to tie separated wide fields together
- Thankfully, LSST will not observe like this...

Wait ... What are we calibrating?

- Traditionally use a largish (12 pixel radius for HSC) aperture for calibrations
 - These are correct for "fluence" images (number of photons incident on the pixel) vs a surface brightness image (differ by a factor of pixel area)
- Not all the flux from the stars falls into this aperture!
- What are the implications? How do we correct for this?
- Aperture corrections!
 - Unfortunately, this is not a uniquely defined concept...

"Aperture Corrections" (Of the First Kind)

- Our best stellar and galaxy photometry is based on PSF-convolved fluxes
- The PSF extends to infinity...
- Should we correct our aperture fluxes to infinity?
- Could use a curve-of-growth...
- This is very difficult and very noisy to compute how it varies on short spatial and temporal scales!

- But all our measurements are relative!
- If we measure our primary calibration stars (e.g. CALSPEC) with the same 12 pixel aperture we only need to know the flux within this aperture
- So we empirically compute an "aperture correction map" to convert PSF/ Cmodel/etc fluxes to the same normalization as our calibration fluxes for wellmeasured stars
- This accomplishes the same goal as the curve-of-growth but avoids pesky infinities
- Note that these aperture correction maps are applied to all stack coadd quantities that rely on PSF models!

 Summarize the full focal-plane difference between PSF and aper mags on a single HSC image

- We must be careful in how we compute the aperture correction map
- · If we do not get background correct, all stars should not be equally weighted

- Is this method optimal?
 - No.
- I believe we know more about the PSF variations (as imperfect as this knowledge is) than to rely on fully empirical corrections
- We plan on exploring this further

"Aperture Corrections" (Of the Third Kind)

- We calibrate with a 12 pixel (2.4" radius) aperture ...
- As the wings of PSF change then more light will go into and out of this aperture.
- The FGCM model must account for this.
 - See also Bernstein et al. (2018), and Gary's talk from this morning

"Aperture Corrections" (Of the Third Kind)

- Compute median of mag in 17 pix aper 12 pix aper
- Photometric residual is strongly correlated!
- Primary source of apparent "non-photometricity"
 - This can be modeled!

In summary, we find that *all* of the deviations above ≈ 1 mmag rms from a static response function plus secant airmass law on short timescales are plausibly attributable to spatial/temporal variations in aperture corrections. The A_t statistic measured from bright stars is an accurate predictor of these aperture corrections, so on a typical half-hour stretch of clear-sky observations we can homogenize the exposure zeropoints to ≈ 1 mmag, and if we have sufficient stellar data in an exposure to map out variation of A_t across the FOV, we could reduce any intra-exposure inhomogeneity to similar level.

Conclusions

- In order to get calibrations to the 5 mmag level (project) or 1 mmag level (DESC) requirements we must know
 - Instrumental throughput (CBP)
 - Atmosphere (AuxTel / FGCM)
 - Throughput variations (FGCM)
- In DES we are <5 mmag
 - Without using external reference catalogs
 - Gets easier with more overlap in space and time (yay LSST!)
- Aperture corrections and PSF modeling remain issues!