

Disclaimer + overview

- This is not a complete review of (the state of the art of) galaxy photometry
- Most will be about how we approach this problem in the Kilo-Degree Survey (KiDS + VIKING)

(Kuijken et al. 2019, A&A 625, A2; Wright et al. 2019, A&A 632, A34)

- Statement of the problem
 - possible approaches
 - GAaP in KiDS
 - thoughts on way forward
- Not addressed: overlapping sources
- Not much on photometric calibration

The Kilo-Degree Survey: basic stats

DR3 DR4 15M. 33M.

Final area 1350 deg²

Lensing images (r):

Seeing **0.7**"
Depth **25**^m (5 σ AB)
PSF Ellipticity **0.03**

Colours: ugriZYJHKs

What do we mean by galaxy photometry

- Total magnitudes, in various bands
 - → stellar luminosities, masses, baryon budget, etc

Colours

- → photometric redshifts, stellar populations, ...
- These are different requirements!
- They only coincide for unresolved (point) sources

I am not talking about surface brightness photometry here

1. Total magnitudes

- Galaxies have no sharp edges
- Need a model to fit wings as they disappear below the noise

- e.g. in 1D: fit flux=1 $\frac{e^{-|x|/a}}{2a}$ 'galaxy' with $F \times \frac{e^{-|x|/b}}{2b}$ model
 - assume uniform noise: Isq. fit gives $F = \frac{\sum MD}{\sum MM} = \frac{2b}{a+b}$
 - model too wide (b > a): F overestimated (due to under-constrained wings). Up to factor 2!
 - model too narrow (b < a): F underestimated up to arbitrary factor!

1. Total magnitudes

These biases change with PSF!

e.g. in 1D: fit
$$\frac{e^{-x^2/2a^2}}{\sqrt{2\pi}a}$$
 'galaxy' with $F \times \frac{e^{-x^2/2b^2}}{\sqrt{2\pi}b}$ model.

- for uniform noise, Isq. fit gives $F = \frac{\sum MD}{\sum MM} = \sqrt{\frac{2b^2}{a^2 + b^2}}$
- now assume Gaussian seeing p. This changes the galaxy and model sizes (add p in quadrature)

• now best-fit fit
$$F = \frac{\sum MD}{\sum MM} = \sqrt{\frac{2b^2 + 2p^2}{a^2 + b^2 + 2p^2}}$$

 These model biases change with PSF (and get smaller as PSF gets worse)

1. Total magnitudes are hard/impossible

- Total magnitudes are model-dependent
- Total magnitudes are observation-dependent
- Total magnitudes are ill-defined in practice (without mentioning sky subtraction!)
- Hence the wide variety of proxies:
 - Petrosian
 - aperture + corrections
 - isophotal + extrapolation (fitted isophote or segmentation*)
 - Sersić, disk+bulge,...
 - ... all of which need to take account of the PSF to interpret them
- Fred Moolekamp's talk Tuesday discussed much of this
- *Also see ProFound/ProFit (Robotham et al., arXiv:1802.00937)

KiD5

2. Colours

- Ideally, colour ← flux ratio between two total magnitudes
- ... but, see before.
- Why do we need colours of galaxies?
 - stellar populations, dust, ...
 - photometric redshifts
- Typically you can get away with only using the bright parts of a source for this
 - avoid the extrapolation errors of model magnitudes
 - use higher SNR parts of the source
- So high-fidelity colours can be measured from apertures
 - ... provided PSF differences are accounted for

2. Colours

- fraction of flux missed is different:
 - ⇒ same aperture on different-seeing data is meaningless unless aperture includes all the flux
- BAD. You need to allow for seeing differences

Colours and apertures

- The PSF scatters photons in the source
- Unequal fractions scatter into, and out of, any aperture

- Fraction depends on galaxy surface brightness profile, and on seeing, and on aperture
- What do you actually measure with aperture photometry?

$$F_{\rm Ap} = \int O(x)A(x)dx = \int (I \otimes P)(x)A(x)dx$$

O(x) = observed image

I(x) = intrinsic image

P(x) = PSF

A(x) = aperture function

KiD5

$$F_{\rm Ap} = \int O(x)A(x)dx = \int (I \otimes P) \times A dx$$

Swap the convolution and the product:

$$F_{\rm Ap} = \int O(x)A(x)dx = \int I \times (P \otimes A) dx$$

- so F_{Ap} = ap.phot. on *Intrinsic I(x)*, with aperture $A \otimes P$
 - as long as this convolved aperture is the same, you are comparing apples to apples and can measure useful colours
- Various approaches:
 - 1. when comparing 2 images, convolve each image with the other's PSF and use matched apertures
 - 2. degrade seeing of best image to worst
 - approximately or carefully (see DIP talks yesterday)
 - 3. standardise PSF and aperture and control aperture on intrinsic image $A \otimes P$.

KiD5 GAaP

- Particularly for many-band surveys a standard(ised) PSF and aperture is most flexible
- GAaP: Gaussian Aperture and PSF
 - standardise PSF to Gaussian
 - use (elliptical) Gaussian apertures
 - chosen to optimise SNR i.e. ~ size of intrinsic image ⊗ typical PSF
 - Benefits
 - Easy to add more bands when then come in
 - ~Optimal SNR for colours
 - Central parts of galaxies are more photo-z friendly
 - · Combine data from different cameras, pixel grids, etc.
 - But
 - formalism breaks down for very large (>x2-3) seeing ratios
 - No attempt to get total fluxes!

Recall

$$F_{\rm Ap} = \int I \times (P \otimes A) \, dx$$

- Assume P and A are Gaussians: then so is $P \otimes A$.
- Convolutions and deconvolution are easy
- elliptical radius • For each source, pick a pre-seeing ap.fn. $W = e^{-\frac{1}{2}m^2/w^2}$ (adapt size/shape for best SNR). same one for all bands!
- For each band, compute post-seeing ap.fn. $A = W \otimes^{-1} P$ and measure the aperture flux $F_W = O(x)A(x) dx$
- These fluxes all correspond to the same pre-seeing aperture function on the galaxy. V V
- Can do this for a range of aperture sizes and so measure curves of growth, gradients, etc. (also annuli)
- Error estimate is easy if covariance matrix of O is known

PSF model and Gaussianisation

- This is a key step
- Current implementation
 - find all (~1000) stars, deduce seeing, set target PSF size
 - set target Gaussian PSF core ~ 1.2x wider than original
 - star by star, find optimal Gaussianization kernel
 - use overconstrained double shapelet model $\sum_{\substack{i+j\leq 8\\i,j=0}}^{i+j\leq 8}k_{ij}H_i(x/\beta)H_j(y/\beta)e^{-r^2/2\beta^2}+\sum_{\substack{i+j\leq 6\\i+j\geq 3}}^{i+j\leq 6}K_{ij}H_i(x/B)H_j(y/B)e^{-r^2/2B^2}$
 - fit smooth model to variation of the k_{ij}, K_{ij} coeffs. over the image
 - convolve the (co-added or not) pixels with variable kernel
 - noise covariances given by ACF of the kernel (easy in shapelet space)

Example

psf residual (single shapelet series)

17

Example

- Broad SNR plateau
- gives some dynamic range for seeing differences between bands
- elliptical aperture helps SNR

To emphasise

- We track noise covariance (see Jim Bosch's talk)
- Model it as a spatially variable shapelet expansion
- Allows analytic calculation for variance of any GAaP flux using only shapelet kernel and SExtractor weight image
- The result is only as good as your PSF Gaussianization
- Workflow in KiDS:
 - detect sources, determine aperture (on r-band co-adds)
 - PSF-Gaussianize ugri coadds, ZYJHK pawprints
 - (all with their own PSF width)
 - get GAaP fluxes for all bands, average multiple exp's
- Working on coadds only OK if PSF jumps are not a worry
- Use 2 apertures per source in case need to incorporate badseeing data in the SED

GAaP and stars

- For point sources GAaP flux = total flux
 - Follows from $W = e^{-\frac{1}{2}r^2/w^2}$: $\int F\delta(x)W dx = FW(0) = F$.
 - For a star any aperture should give the same GAaP flux
- This makes an integrated measurement of stars as photometric calibrators straightforward
- Nice star-galaxy separation tool

Photom.cal.

- photometric calibration from stars
 - nightly zeropoint from standard star fields
 - overlap between tiles
 - stellar locus fit (g-r, r-i)
 - r tied to Gaia G
 - Will improve further with Gaia DR2 (multi-colour)

Star-galaxy separation

 GAaP curve of 'growth': compare σ=0.7" and 1.0"apertures

Star-galaxy separation

 GAaP curve of 'growth': compare σ=0.7" and 1.0"apertures

unresolved sources really are stars

Centroid & aperture bias

- Our aperture shape and centre is set by r band detection
 - noise bias (2nd order)
 - for point sources $\sqrt{2\delta x} \sim \text{FWHM/SNR}$

detection SNR

Photometry error for point sources $\simeq W_{\rm pre}(\delta x) \simeq e^{-1/{\rm SNR}^2} \simeq 1 - 1/{\rm SNR}^2$

$$\simeq W_{\rm pre}(\delta x) \simeq e^{-1/{\rm SNR}^2} \simeq 1 - 1/{\rm SNR}^2$$

Important for low-SNR detections

GAaP in KiDS

- All KiDS photo-z are based on GAaP
- No issues combining 0.2" VST pixel data with 0.34" VISTA pixels
- Using data with seeing 0.45 1.3 arcsec
- Run time ~ minute per 300Mpix image
- Photo-z are calibrated by comparison to spectroscopic samples, imaged with same filters, instruments and depths as main sample
- So far it does the job

Possible further developments

- Skip the explicit generation of the Gaussianised-PSF image: instead
 - Calculate $(W \otimes^{-1} P) \times O$ directly for each source
 - Added advantage is greater simplicity of error estimate
 - Which route is more practical depends
 - on how many apertures you want to photometer
 - whether you have other uses for the Gpsf image
 - e.g. shape measurement (SNAP-G, Herbonnet et al. 2017, A&A 599, A73)
- Alternative approach to PSF kernel modelling
 - Shapelet model is nice and stiff, but not necessarily the best