

Presentation to the SAC Survey strategy status and plans

Lynne Jones & Peter Yoachim

LSST2019 Project & Community Workshop
August 12, 2019

LSST Project and Community Workshop 2019 • Tucson • August 12 - 16

#lsst2019

Current Status

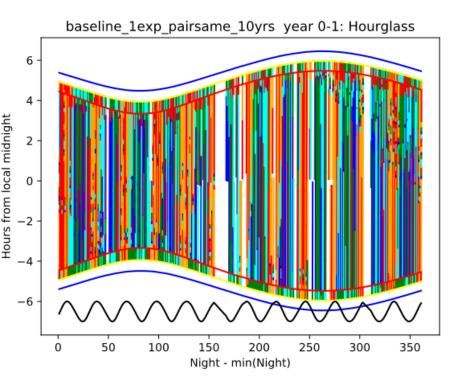
- Starting investigation of many families
 - See July2019 update on community with more information on FBS 1.2 set of runs
 - https://community.lsst.org/t/july-2019-update/3760 (http://ls.st/xsb)
- Not complete, but getting better understanding of what metrics are telling us and what will need to go into report to the SCOC
 - Working with subsets of the community, but looking to add more community posts surrounding this
- Will be releasing more runs and also writeups describing interpretation and comparisons of various runs

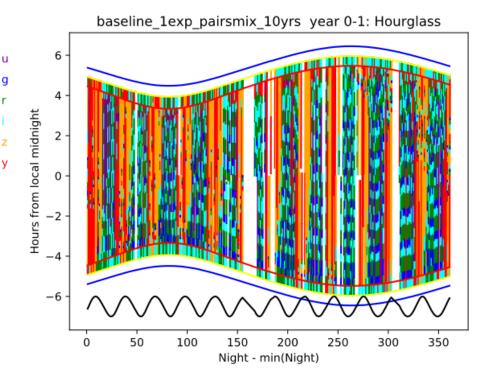
Runs matching SAC requests

- Pairs in same or different filters
- 1x30 or 2x15 visits
- Presto color (g+i+pause+g)
- Footprint variations (9 different ones)
- Rolling cadences (13 variations)
- Dithered DDF (spatial)
- DESC DDF
- Target of opportunity (ToO)
- Vary u-band filter loading
- 1s or 5s exposure sky coverage
- Stability tests

Bonus Experiments

- Pathological footprint
- Variable exposure time
- AltSched like behavior
- Camera rotator dithering
- Smarter rolling cadence

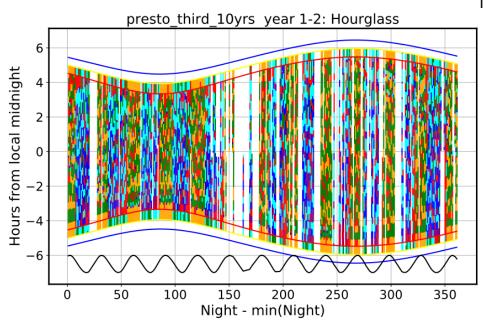

FBS 1.2 runs: pairs of visits



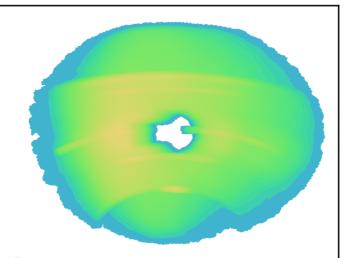
Baseline-like sims

- 1x30s snaps in a visit
- 2x15s snaps in a visit
- g+g, r+r, i+i pairs
- g+r, r+i, i+z pairs

1x30s snap, mixed filter pairs as the "baseline" behavior for the rest of the simulations

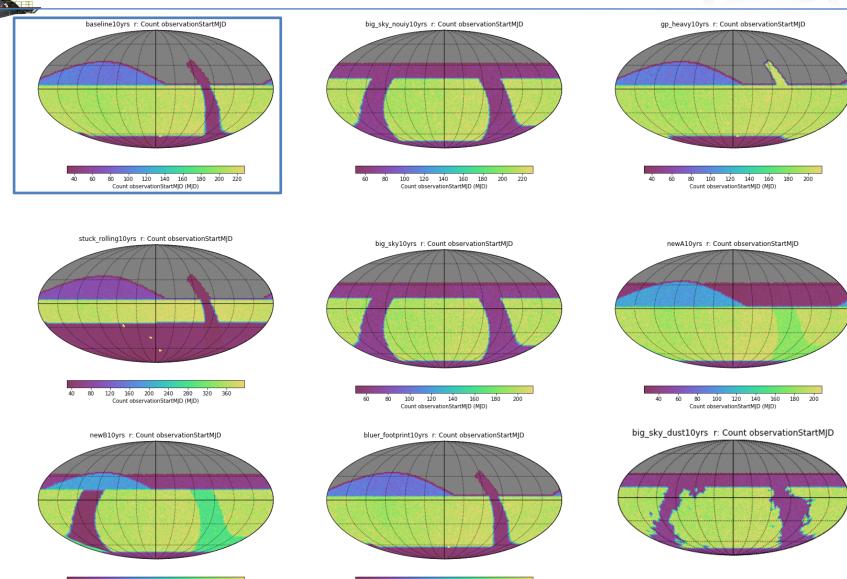


FBS 1.2: presto-color



Presto color

- g+i...40-120min later+g
- r+z...+r


presto_third_10yrs: Nvisits as function of Alt/Az

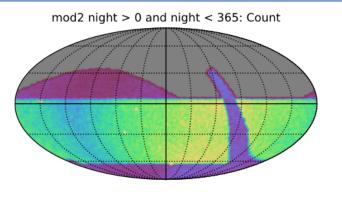
FBS 1.2 runs: footprints

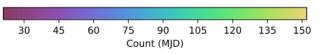
80 100 120 140 160

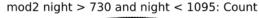
Count observationStartMJD (MJD)

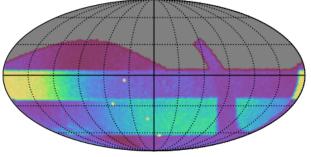
80 100 120 140 160 180 200 220

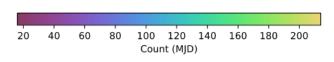
Count observationStartMJD (MJD)

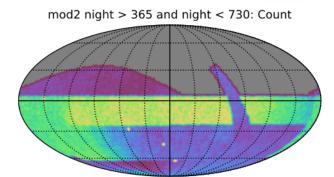

FBS 1.2: rolling cadence

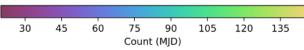


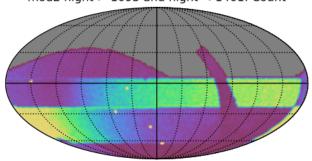

Start off normal, then divide WFD in (half) and alternate emphasis on north and south


Year 1 like baseline, WFD gets 120 observations/yr

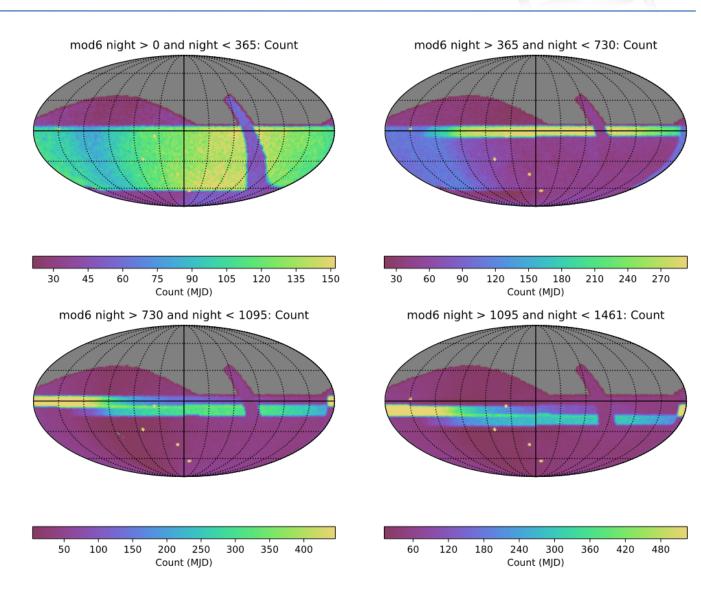

Rolling, get 25 or 215 observations per year





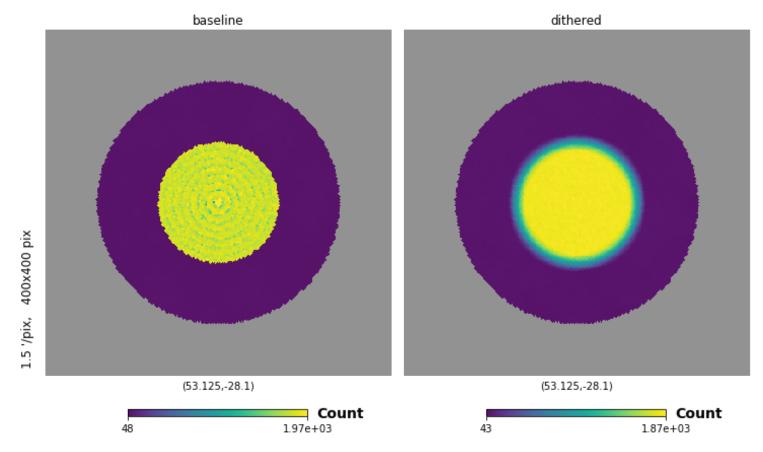


mod2 night > 1095 and night < 1461: Count



FBS 1.2: rolling cadence

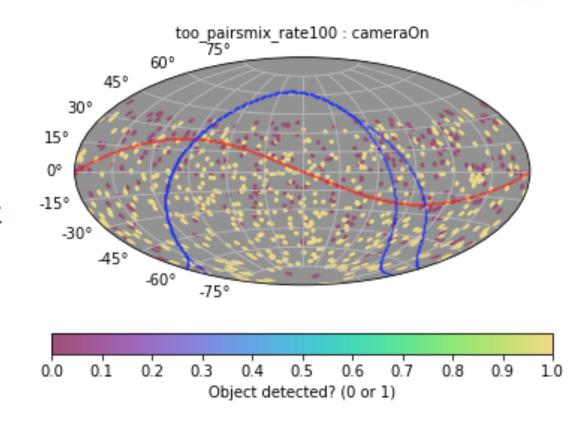
More extreme rolling: have 6 declination stripes. Then 450+ observations in a season, with 400 more visits over remaining 9 years.



FBS 1.2: DD dithering & sequences

DDF

- Spatial Dithering
- DESC suggested cadence



FBS 1.2 : ToOs

Target of Opportunity

- 1, 10, 50, 100 alerts per year
- Usually able to detect
 ~55% of ToOs

FBS 1.2 runs: More runs

Filter Loading

 Vary when u and z get swapped out of the camera

Short exposures

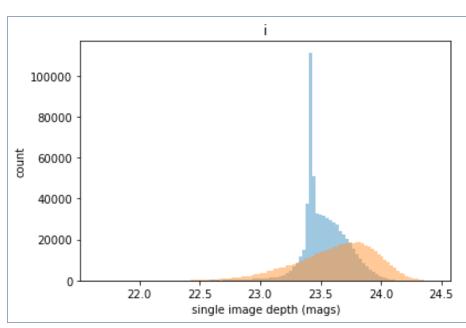
Mixing in 2s or 5s exposures

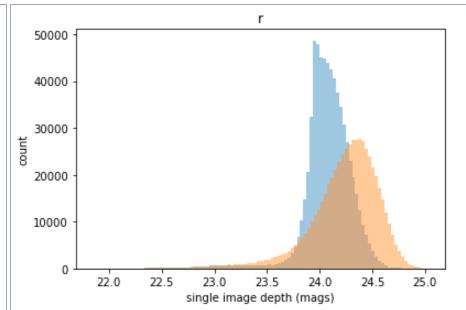
Twilight time

Taking 1s exposures in twilight

Stability tests

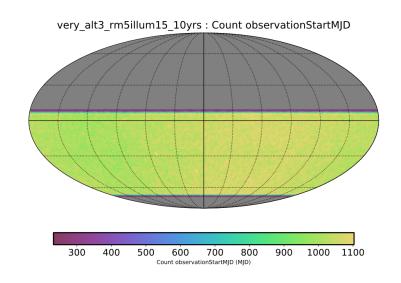
Vary start date & random seeds

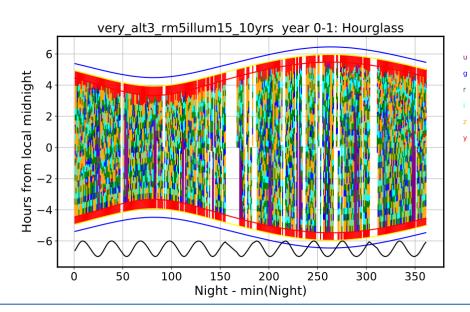



FBS 1.2: variable exposure time

Adjust exposure time between 20 and 100s to get specified depth on every visit.

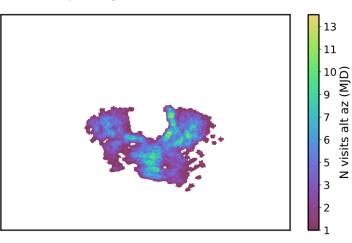
Images are shallower, but you get more of them. 2.9 million observations instead of 2.5, lose ~0.1 mag of final coadded depth.

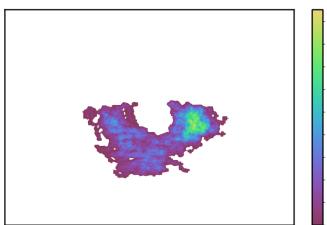



FBS 1.2: alt_sched like

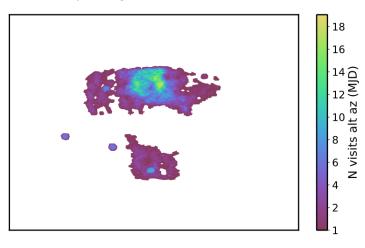
Alt-Sched like

- Y-band in twilight
- Blue filters in bright time
- Alternate north and south each night

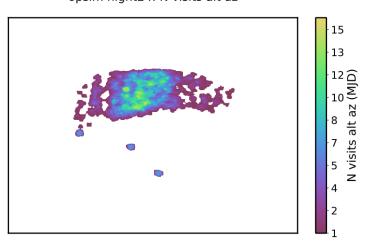



FBS 1.2: alt_sched

opsim night21: N visits alt az



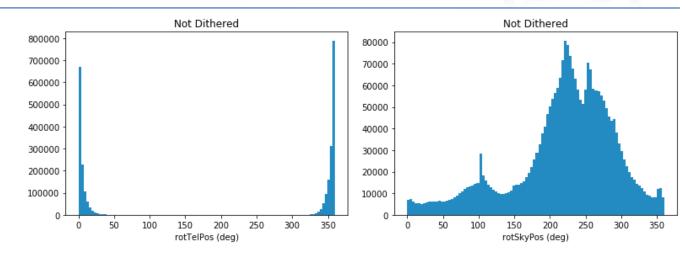
opsim night23: N visits alt az

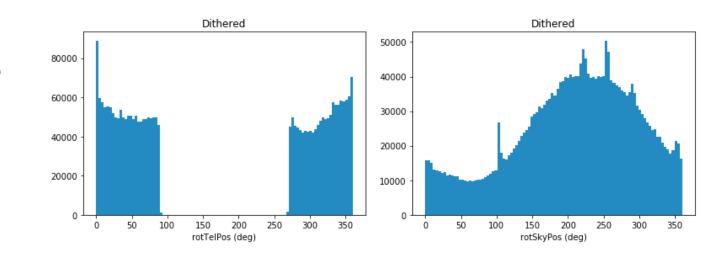


15 13 12 (0IM) 8 7 7 5 N visits alt az (MID) 4 2 1

opsim night22: N visits alt az

opsim night24: N visits alt az


FBS 1.2: rotator angle



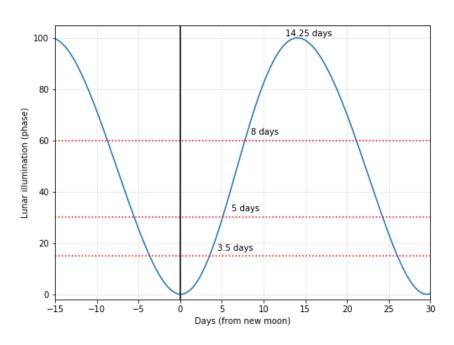
Rotator Angle

Baseline keeps the cameratelescope angle near zero.

Can select a telescope angle per night to randomize orientation

Analysis

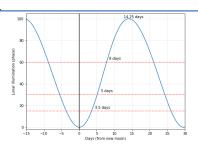
- u band filter swap
- baseline pairs of visits
- WFD footprint
- rolling cadence



u band filter switch FBS 1.2 runs

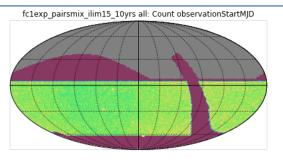
Limit u band to within +/-2 nights of new moon

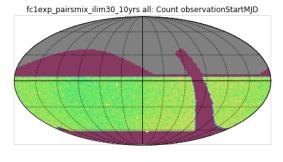
Effect on DD


	Illum 15	Illum 30	Illum 60
DD:u,290	726	1295	2079
DD:u,COSMOS	1421	2590	3206
DD:u,ECDFS	1714	3178	3327
DD:u,ELAISS1	1092	2079	3281
DD:u,XMM-LSS	1211	2247	3265

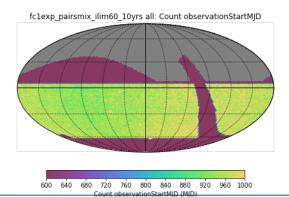
	Illum 15	Illum 30	Illum 60
DD:u,290	27.106095	27.408551	27.653017
DD:u,COSMOS	27.397545	27.724804	27.815033
DD:u,ECDFS	27.560829	27.912816	27.898625
DD:u,ELAISS1	27.434422	27.808381	28.052296
DD:u,XMM-LSS	27.383279	27.724085	27.915011

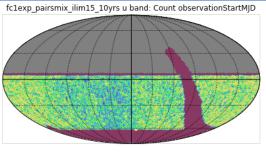
u band filter switch FBS 1.2 runs

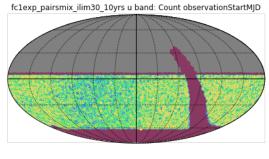


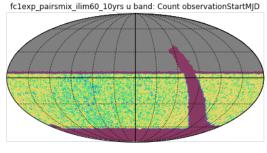

	Illum 15	Illum 30	Illum 60
Min	1.000000	1.00000	1.000000
25th%ile	307.000000	308.00000	318.000000
Mean	778.649605	777.90281	778.531494
Median	912.000000	915.00000	941.000000
75th%ile	942.000000	945.00000	971.000000
Max	43074.000000	44317.00000	34800.000000

	Illum 15	Illum 30	Illum 60
Min	1.000000	1.000000	1.000000
25th%ile	54.000000	55.000000	58.000000
Mean	59.386335	62.798245	66.956338
Median	62.000000	63.000000	66.000000
75th%ile	67.000000	68.000000	71.000000
Max	1788.000000	3251.000000	3402.000000


Keep u band longer

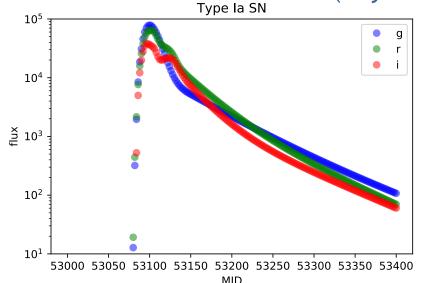


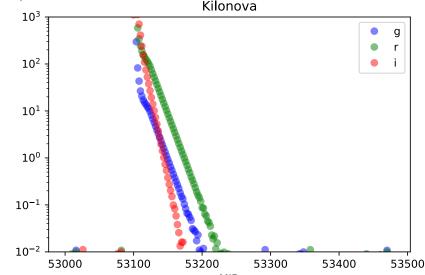




Analysis

- u band switch
- Motivation for limiting the time u band available comes from DESC/get best u band depth
- Limiting u band availability restricts potential DD u band depth and increases likelihood of not reaching requested u band visits in WFD
- Is the u band depth in WFD justified? Should visits be reallocated to DD and GP, allowing more time limits on u band availability?
 - Add coadded depth from SRD (photo-z requirement)
 - Look at longer exposures in u band? (& improvement with bugfix)

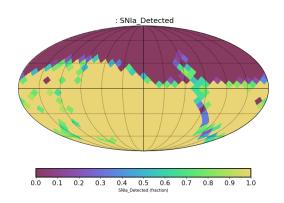


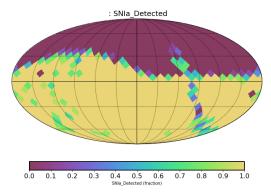


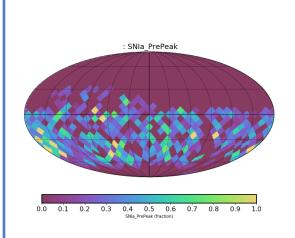
- Filters for pairs (same, mix, presto)
- Transient metrics: generate population of transients using (PLAsTiCC) light curves, distribute over sky & time, use MAF to test recovery rate

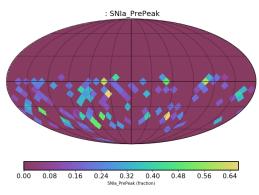
"Pre-peak" criteria: Measure a color before peak, and a rise slope in at least 1 filter

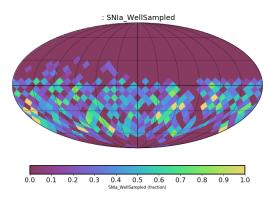
"Well sampled": Divide LC into 10 bins, demand 5 have observations (any filters). I would love a better criteria!

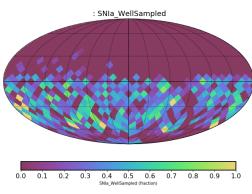





4k Type Ia SNe

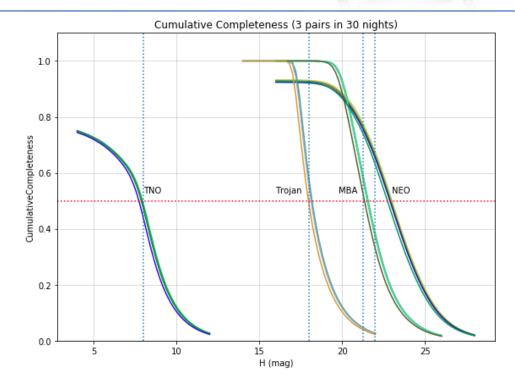

Pairs mixed 62% detected


Pairs same 62% detected


15% measured pre-peak

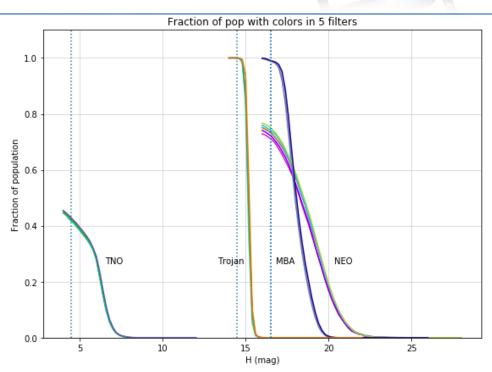
3% measured pre-peak

17% "well-sampled"


16% "well-sampled"

Mixing filters for pairs does have a cost to SSOs.

Set up some small % of visits to be same filters?



	NEO H=22	MBA H=21.25	Trojan H=18	TNO H=7.5	
baseline_1exp_pairsame_10yrs	67.3	59.2	57.5	57.7	~1% mixing pairs
baseline_1exp_pairsmix_10yrs	66.5	58.7	56.6	57.0	1/0 mixing pairs
baseline_2exp_pairsame_10yrs	66.0	58.2	56.3	56.9	20/ 2.45
baseline_2exp_pairsmix_10yrs	65.2	57.8	55.0	56.6	~2% mix pairs + 2x15s
presto_third_10yrs	62.9	52.7	48.4	54.3	~5-6% presto_third

Characterization fairly insensitive to filters used for pairs*.

	NEO H=16.5	MBA H=16.5	Trojan H=14.5	TNO H=4.5
baseline_1exp_pairsame_10yrs	73.3	98.9	100.0	42.6
baseline_1exp_pairsmix_10yrs	74.1	99.0	100.0	42.6
baseline_2exp_pairsame_10yrs	71.1	98.8	100.0	42.1
baseline_2exp_pairsmix_10yrs	72.2	98.9	100.0	41.6
presto_third_10yrs	75.0	99.1	100.0	42.7

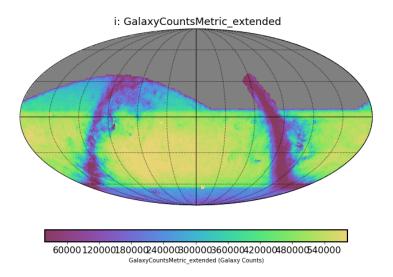
^{*} presto_third increases NEO characterization, but has a larger cost to overall discovery

Analysis

- Motivation for pairs in different filters comes from characterizing (slowly) changing transients
- Increases pre-peak sampling of SNIa (3% 15%)
- Pushback comes from worry that SSOs will be harder to discover - there is some impact on SSO discovery, particularly with presto_third in its current form.
- Additional pushback that changing filters is less efficient
 ~2% penalty

Add some small % of visits in same-filter, try to rework presto_third

baseline_1exp_nopairs_10yrs	100.8
baseline_1exp_pairsame_10yrs	100.0
baseline_1exp_pairsmix_10yrs	97.9
baseline_2exp_pairsame_10yrs	92.4
baseline_2exp_pairsmix_10yrs	90.5



WFD footprint FBS 1.2 runs

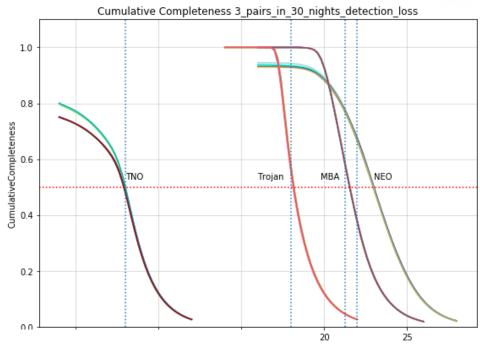
- 'WFD footprint'
- Galaxy Count Metric (credit Humna Awan)
- Calculate number of galaxies available for LSS studies

60000 120000180000240000300000360000420000480000540000
GalaxyCountsMetric_extended (Galaxy Counts)

i: GalaxyCountsMetric extended

Baseline WFD: 10.8 billion galaxies

newB footprint WFD: 10.6 billion galaxies

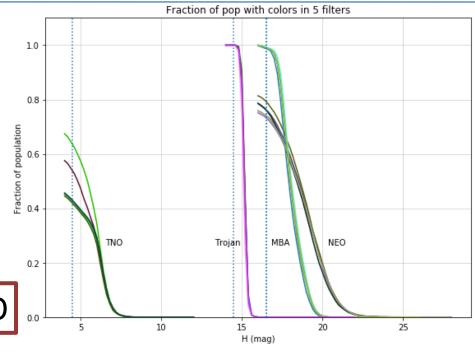


WFD footprint FBS 1.2 runs

- 'WFD footprint'

More coverage in the north improves discovery of TNOs.

						20 25
	NEO H=22	MBA H=21.25	Trojan H=18	TNO H=7.5	mag)	
baseline_1exp_pairsame_10yrs	67.3	59.2	57.5	57.7		
baseline_1exp_pairsmix_10yrs	66.5	58.7	56.6	57.0		newB10yrs r: Count observationStartMJD
newA10yrs	67.0	58.0	54.9	59.5		
newB10yrs	67.1	58.6	55.9	60.0		
bluer_footprint10yrs	67.5	59.0	57.5	57.2		40 é0 80 100 120 140 150 180 200 Court observation/StartMID (MID)
gp_heavy10yrs	66.8	58.5	56.1	57.1		


WFD footprint FBS 1.2 runs

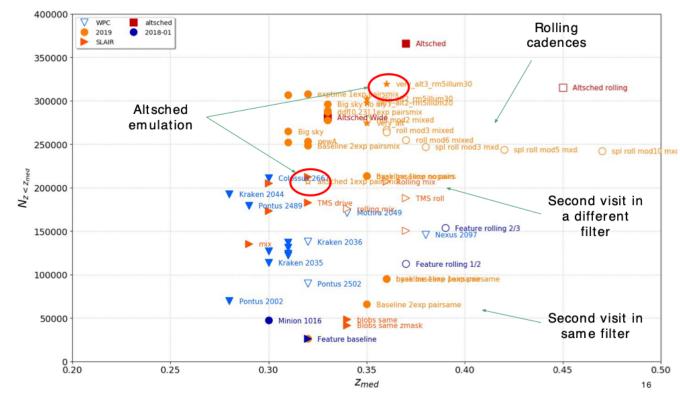
- 'WFD footprint'

More coverage in the north improves characterization of TNOs AND NEOs.

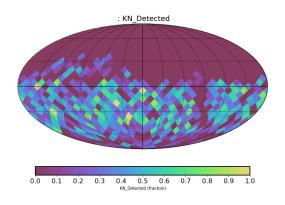
Need to add MBC & resonant TNO

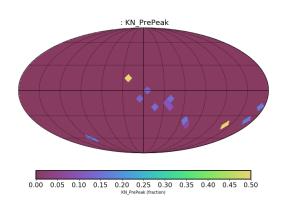
	NEO H=16.5	MBA H=16.5	Trojan H=14.5	TNO H=4.5
baseline_1exp_pairsame_10yrs	73.3	98.9	100.0	42.6
baseline_1exp_pairsmix_10yrs	74.1	99.0	100.0	42.6
newA10yrs	76.3	99.1	100.0	53.7
newB10yrs	79.3	99.3	100.0	63.4
bluer_footprint10yrs	76.1	98.8	99.9	41.8
gp_heavy10yrs	74.0	99.0	100.0	42.9

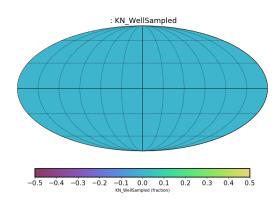
Analysis

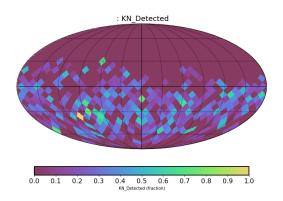

- Footprint
- Motivated first by DESC desire for more galaxies
- Galaxy counts don't show clear improvement
- Some motivation from mini-surveys (NES, Euclid, DESI)
- Some improvement for SSOs (discovery and characterization) if WFD footprint extended north
- Return to DESC for clarification on metrics
- Redo footprint with E(B-V) cut exactly (done)
- Redo footprint with 90% WFD and with 825 visits .. look at options to increase visits in N/S (counter poor seeing)

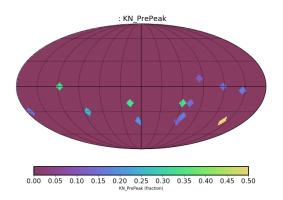
- 'rolling cadence variations'

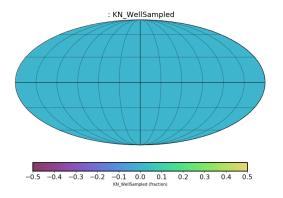

SNe group has been running more intensive analysis and giving feedback on sims


From Nicolas Regnault




Kilonova transient detection



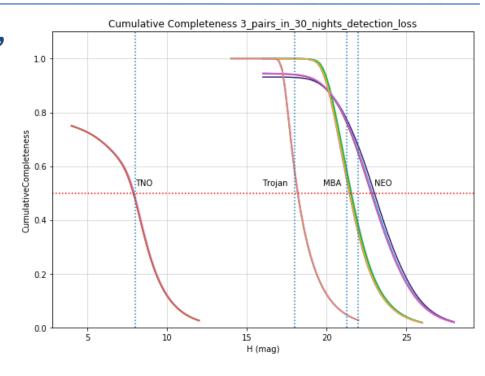

Baseline 19% detected

0.3% pre peak

0% well sampled

10-band rolling 11% detected 0.3% pre-peak

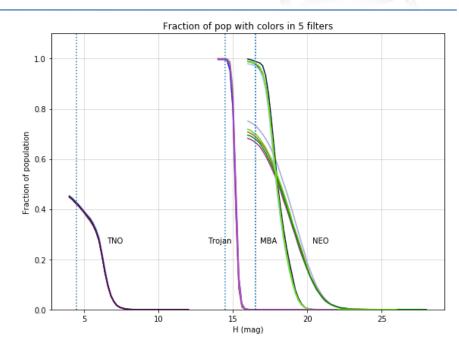
0% well sampled



'rolling cadence variations'

Rolling cadence has impact on discovery of NEO and MBAs. Have not tested MBCs yet.

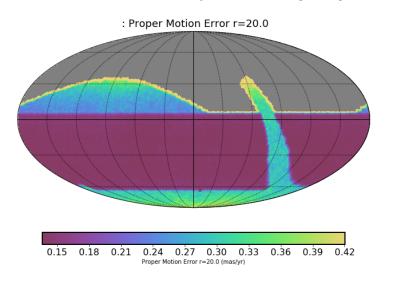
	NEO H=22	MBA H=21.25	Trojan H=18	TNO H=7.5	
baseline_1exp_pairsame_10yrs	67.3	59.2	57.5	57.7	
roll_mod2_sdf0.05mixed_10yrs	65.3	57.0	58.2	56.9	~2-3% los
roll_mod2_sdf0.20mixed_10yrs	65.3	57.1	57.3	56.7	NEOs and slightly b
roll_mod3_sdf0.05mixed_10yrs	64.3	55.0	58.5	56.5	with high
roll_mod3_sdf0.20mixed_10yrs	64.9	55.9	58.7	56.8	backgrou

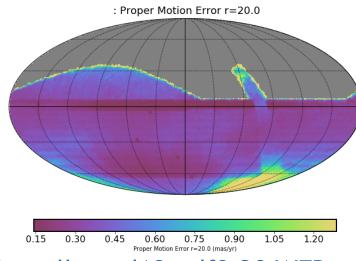

es for MBAs, tter d visits

- 'rolling cadence variations'

NFO H-16 5	MRA H-16 5	Trojan H=14.5	TNO H-4 5
NEO H= 10.3	1VIDA N= 10.3	110jan n= 14.5	1 NO H=4.5

	1120 11-10.0	111010	110,41111-1410	1110 11-4.0
baseline_1exp_pairsame_10yrs	73.3	98.9	100.0	42.6
roll_mod2_sdf0.05mixed_10yrs	68.9	97.7	99.8	41.9
roll_mod2_sdf0.20mixed_10yrs	69.9	98.1	99.8	42.2
roll_mod3_sdf0.05mixed_10yrs	66.6	97.0	99.5	42.1
roll_mod3_sdf0.20mixed_10yrs	67.9	97.9	99.8	42.3


~4-7% fewer NEOs obtaining measurement of grizy colors



Uncertainty in the proper motion of an r=20 star

Baseline WFD median: 0.14 mas

simple_roll_mod10_sdf0.20 WFD: 0.30 mas

If there is no covariance, the proper motion uncertainty only depends on when observations happen and the centroiding errors.

If we do a very aggressive rolling cadence, proper motion error blows up. Need full sky coverage in year 1 and 10 to keep proper motion errors low.

Analysis

- Rolling cadence
- Motivated by desire to increase cadence for WFD observations (better discovery for transients)
 - Rolling cadence does better for SN discovery, but doing pairs in mixed filters is largest improvement
- Has some negative impact on discovery and characterization of inner solar system (NEO, MBA) objects
 - Check wider range of rolling cadence runs
 - Run simulations with higher background rate?
- Likely to need full-sky coverage each year for difference imaging templates & calibration
- Likely we're missing some metrics sensitive to rolling cadence variations

What's next? (FBS 1.3 and beyond)

Additions

- Fix bug in depth calculation (1x30 vs 2x15)
- Improve DD sequences (DESC) and add AGN DD sequences
- Add mini-survey variations (N, S, GP) to evaluate range of impacts on time requirements
- Run footprints with WFD held at 90%, as well as held at 825 visits/pointing
- BUT need improvements in metrics as well.
 - Need to push metric development (work with Fed)
 - Solar system metrics need addition of MBC and resonant TNO populations (more sensitive)
 - Need more samples of transients (and requirements)
 - Footprint metric (galaxy counts?)

What's next? (FBS 1.3 and beyond)

- Beyond 1.3:
 - Bright planet (and satellite) avoidance
 - Add more more sophisticated sequences for WFD (specifications on filters for next-night observations)
 - Tackle remaining queue
- Run releases every other month (Sep, Nov, Jan.)
- Write ups and respond to what we're learning

Still in the queue

- AGN DDF
- Akari and WFIRST/Euclid DDF experiments
- Bulge and low galactic latitude variations
- LMC/SMC mini-surveys
- Twilight NEO survey
- Twilight DCR
- Mini-surveys in the North
- Season extension (not super well defined)
- Anti-alias timing (is it really a problem?)

